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1 Summary
The mereos1 program is an Enabling Technology Developments and Demonstrations (etdd) project
of the Agile Manufacturing Pilot Program (ampp) funded by the United States Air Force Research Lab-
oratory, Materials & Manufacturing Directorate, Manufacturing Technology Division (afrl/mlm)
under contract F33615-95-C-5519. 

Mereos is one element of the Platform for Automated Construction of Intelligent Systems (pacis®)
project. The two primary mereos program objectives were first, to identify the root causes of the
multiple bom reconciliation problem and define the requirements for a solution, and second, to
prove, via demonstration, the feasibility of developing a system to implement that solution. 

The technical aim of the pacis project is to produce a next-generation database programming sys-
tem that provides the tools required to develop, deploy and sustain large-scale manufacturing enter-
prise decision automation systems. The strategic aim of the project is to enhance the value of
solutions enterprises deliver to their stakeholders by bringing automation to bear on enterprise
integration and on critical processes in their value streams—specifically, those processes requiring
extensive experience and cognitive skills to execute or govern—and, accordingly, those which have
heretofore been intractable to any but the most superficial automation. Launched in 1981 as a pri-
vately funded effort led by the team who founded Ontek Corporation in 1985,2 the pacis project has
been funded since then by afrl/mlm and several industrial organizations.3

1 An ungrammatical plural rendering of the Greek term <meris (part)–thus, “parts.” >
2 The project originated as an effort to develop a decision automation system for Reynolds & Taylor, Inc., a second tier

aerospace & defense subcontractor located in Santa Ana, California. 
3 Alcoa, Northrop Aircraft Division, Westinghouse Electronic Systems Group, and Lockheed Martin Aeronautical Sys-

tems. Beginning in late 1999, the Lockheed aeronautics sector companies were consolidated into a single company
called LM Aero, which is headquartered in Ft. Worth, Texas. 
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Information is the raw material of decision-making, and information systems are instrumentali-
ties for provisioning decision-making processes—they are tools for provisioning purposeful
thought. The value of any particular tool to a potential user ultimately consists in two attributes.
The first is its applicability to the aims of a user—its utility. The second is its capability to facilitate
accomplishment of those aims—its effectiveness. In the final analysis, the value of a tool can only be
gauged by using it. 

Pacis is a tool for creating decision automation systems—specific types of information systems—it
is a tool for toolmakers. Its value accordingly consists in its instrumental applicability to the aims of
those users and in its effectiveness in enabling accomplishment of their aims. This makes it difficult if
not impossible to demonstrate its value to executive management and other indirect beneficiaries
of the technology. To overcome this inherent ‘value visibility’ problem, we have over the years pro-
duced and demonstrated solutions to visible albeit technical needs of those who would ultimately
benefit from decision automation systems: executive management and support staff. Mereos is the
most recent of these.

Mereos program execution was structured into three distinct phases in accordance with
etdd/ampp project requirements. These were:

Phase I Technology Feasibility Dec 94–Dec 95

Phase II Prototype Demonstration  Jan 96–Dec 98

Phase III Pilot Production Implementation  Jan 99–Jan 00

The original mereos Statement of Work (sow) addressed Phase I and II tasking. Phase III was an
option which required separate authorization and a second specific sow. All three phases were exe-
cuted. 

The mereos program was originally conceived as an information systems-centric effort to identify
the requirements for and demonstrate a solution to the multiple bom reconciliation problem. While
these original program objectives were achieved, the program underwent a transformation in both
focus and venue during its execution. We set out to solve an informatics problem: we accomplished
that, but also ended up solving several enterprise architecture problems as well, resulting in a base-
line for a new aerospace enterprise operating system. The reasons for this ostensibly radical shift
are discussed at some length in paragraph 2.6 in the Introduction. 

Principal program results consist in formal requirements definitions for two specific systems. One
was for a new kind of product data management system. The other was for a new kind of enterprise
operating system. The first was demonstrated by software. The second was demonstrated by execu-
tion of an enterprise architecture program. Each are directly related to the other, albeit in complex
and intricate ways. The former results are complete, and are presented in Section 3: Results Part I.
The latter is a work in progress, although by the end of the program a great deal of work had been
accomplished, and a great many lessons had been learned. The results obtained as of December 2000
are presented in Section 4: Results Part II. 
2



                          

“Intelligence is the faculty of making artificial objects, especially tools to make tools.”

 

Henri Bergson, 

 

L’Evolution Creatrice
2 Introduction
The mereos program is one element in a larger multi-year effort called the pacis project. It was
designed to serve three purposes in that context. The first was to demonstrate, via a specifically tar-
geted application, the technical capabilities and strategic business value of pacis technology to
potential user organizations. The second was to provide a technical focus for a major re-design of
pacis representation system metastructures. The third was to provide a suitably complex test bed for
internal evaluations of pacis representation system capabilities and performance. 

2.1 Pacis Program Objectives

The goal of the pacis project is to produce a next-generation database programming environment
that provides the tools required to develop, implement and sustain enterprise management decision
automation systems. A decision automation system is a large, geographically distributed intelligent
computing system designed to automate many of the management support staff functions currently
performed by human beings. One can think of decision automation systems as white collar robots
and pacis as a tool for building and maintaining them.

The specific objective of a management decision automation system is to enhance the economic
viability and agility of an enterprise by automating tasks that require extensive expertise, such as
change impact analysis, resource allocation, tactical plan development, make/buy decisions, and so
on. Existing enterprise systems do not automate these kinds of activities. At best they provide some
of the more mundane information management and computation services that people need to per-
form them. The high non-touch labor cost content of total product cost (60 - 70%) in most manu-
facturing industry sectors is one symptom of this phenomenon; the tremendous costs and long lead
times associated with incorporating engineering changes into complex products is another.

The central tenet underlying our approach to pacis is that decision automation systems cannot be
3



                                           
built, let alone implemented and sustained, without extensive automation. That is, the tasks of con-
structing, implementing, and sustaining decision automation systems must themselves be auto-
mated. The two most daunting characteristics of management decision automation systems are their
physical and conceptual scales. The existing automated information assets of a reasonable size
enterprise are measured in the multiple-terabytes, as the figure below illustrates.4 

Any management decision automation system would have to manage a substantially larger infor-
mation base. Thus, the physical scale is well beyond the current approach to database manage-
ment.The conceptual scale, required to support management decision automation, is likewise
beyond the current capabilities for representing the knowledge of an enterprise. A system providing
a fusion of these capabilities at the required physical and conceptual scales does not, as yet, exist. 

2.2 Pacis System Architecture

Pacis is made up of four component subsystems. These are:

1. Nucleus

The pacis nucleus is a portable distributed virtual machine providing a comprehensive suite
of computing services to the other pacis subsystems. These services include host computing
platform-independent program invocation and runtime management, memory manage-
ment, i/o, and network communications.

2. Information management subsystem

The pacis information management subsystem is an ansi[1] and iso[9] 3-schema compliant
dbms providing a unified information definition, delivery, and management environment
supporting transparent and dynamic access to information contained in heterogeneous
databases residing on distributed heterogeneous computing platforms. The core of this sub-
system is a knowledge representation system that supports, among other things, represen-
tations of processes, and intensional contexts as first-class entities; direct representation
and manipulation of foreign system schemata and operations; and a comprehensive classifi-
cation system that supports the definition and manipulation of distinct kinds of taxonomic
schemes in several alternative topologies.

3. Presentation subsystem

The pacis presentation subsystem contains two distinct components: the human interface
system and the application program interface. The human interface system provides an

4 These numbers represent estimates we developed during our participation in the Alcoa Information Architecture pro-
gram from 1989–1991. They are of course outdated now; the current physical scale of Alcoa applications and data-
bases would of course be much larger than this. 

Figure 1.  Informatic Scale of a Large Multinational Enterprise
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extensive suite of interactive graphical interfaces and hardcopy reporting facilities required
for user interaction with pacis. The application programming interface is a library of call-
able functions and routines that enable third-party system developers to access the pacis
nucleus and information management subsystem services from their applications.

4. Semantic repository

The pacis semantic repository is a collection of knowledge bases containing definitions for
a broad class of entities commonly encountered in business environments.

The current version of pacis is based upon over 15 years of research and development whose goal
is the fusion of knowledge representation, database management systems, and declarative program-
ming technologies.

2.3 Pacis Project History

The pacis project began in 1981 as an effort to develop a decision automation system for Reynolds &
Taylor, a second-tier aerospace job shop employing 250 people, located in Santa Anna, California.
By 1985, a version of that system had been developed and successfully implemented in the com-
pany. The Reynolds & Taylor system was a fully integrated job shop management system that pro-
vided extensive automation for tasks such as estimating, process planning, material management,
mil-q-9858 compliant quality management, and far/dfars compliant finance and administration.
This system was in turn built using a precursor of pacis developed between 1981 and 1984. The sys-
tem was used to operate Reynolds & Taylor until the company was sold in 1989.

Because the Reynolds & Taylor system provided functionality unavailable in other much larger
systems,5 the project attracted the attention of both the Air Force and several prime contractors____ _ _ _ _ _ _ _ _ µ µ—
notably Northrop Aircraft Division, Alcoa, and Westinghouse Electronic Systems Group—who were
customers of Reynolds & Taylor. As a result, in late 1985 the Air Force Materials Laboratory, Manu-
facturing Technology division (now afrl/mlms) awarded Reynolds & Taylor a Small Business Innova-
tion Research (sbir) contract to improve the capabilities of the original tools used to build the
system and scale them to the point where they could be used to develop similar systems for prime
contractors. In response to this award, matching funds were provided by Alcoa, Northrop, and
Westinghouse, the original project team formed Ontek Corporation, and the sbir contract was
novated from Reynolds & Taylor to the new company.

From 1986 to 1988, the team conducted fundamental research in knowledge representation,
focusing on developing techniques for encoding and manipulating the complex cognitive processes
and semantic structures involved in manufacturing enterprise management. This work culminated in
the development of a prototype representation system which was demonstrated to a large industry
and DoD group in early 1988. Based upon that demonstration, Northrop awarded Ontek a major
subcontract under the Automated Airframe Assembly Program (aaap) to develop a full-scale version
of the system—by then designated pacis. The first working version of pacis was delivered to
Northrop in December of 1989.

The first version of pacis was used to develop several experimental application systems, each
designed to test and demonstrate a key capability required for its eventual use as a platform for
management automation systems. Three of these were:

❙ Concurrent engineering model integration system; an application for modelling and analy-
sis of the To-Be configuration of the Northrop Product Definition and Development Center
(pddc), the Integrated Product Definition (ipd) organization for the f-23 program. This sys-
tem was developed to demonstrate the ability of pacis to represent complex processes and
conceptual structures, and was used to model program organization structure, activity f low,
documentation trees, and product structures in a single unified environment, and sup-
ported interactive graphical analysis and simulation of these structures.

5 Raw material lot and batch number traceability by part serial number; actual cost by part serial number; shop sched-
uling to the machine tool/operator level; non-destructively updated databases; fully dynamic user-definable ad-hoc
queries; etc.
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❙ Legacy database integration system; an application supporting dynamic ad-hoc queries
across distributed heterogeneous databases, including ims, db2, and oracle. One of the
major subsystems in this application was an ims schema acquisition system, which was
developed to demonstrate the ability of pacis to subsume other database management sys-
tem schemata. This subsystem automatically generated pacis representations of ims database
systems directly from compiled binary on ibm mainframes. The legacy database access sys-
tem was used to support several other demonstration applications at Northrop under the
aaap, at Alcoa, and at Westinghouse.

❙ Material status reporting system; an application developed for the Westinghouse Advanced
Development Organization (ado) to provide material status accounting on outside pur-
chases and inventory for prototype product development. This system was developed to
demonstrate the ability of pacis to provide commercial third-party applications with trans-
parent access to legacy databases. It enabled end users to directly access information con-
tained in both ims and db2 databases via excel spreadsheets on a Macintosh. Prior to the
implementation of the application, this process took one person up to 5 days of elapsed
time to perform. The application produced more accurate information than the manual
procedure and required an average of 15 minutes of elapsed time to execute.

Work began in late 1991 to transition the project from a focus on r&d to full-scale development
of a production version of the system. These activities were funded by afrl/mlms under the Corpo-
rate Data Integration Tools (cdit) program, with additional funding from Alcoa and Westinghouse,
and continuing technical support from Northrop. The objectives of these transitional activities were
to develop a formal methodology for semantic analysis, to support the creation of pacis knowledge
bases for use in an enterprise integration environment, and to develop new pacis interfaces to sup-
port the methodology. By the end of 1993, the new analysis methodology had been developed, a
new suite of interface tools to support pacis knowledge base definition had been produced, and
preliminary high-level designs for a new production version of the system had been developed.
Detailed design and preliminary development of the new production version of pacis began in Janu-
ary of 1994, funded by wl/mt under the Advanced Enterprise Integration (aeip) program. 

The overall goals of the aeip program were to improve pacis system performance and maintain-
ability, and to develop the software infrastructure required to implement a database programming
language (dbpl). Three specific objectives were established to support these goals: redesign of the
pacis nucleus; design for the pacis dbpl; and, selection of a suitable demonstration application for
the new version of pacis. 

2.4 The Strategic Problem: Demonstrating Pacis

Tools, whether concrete or abstract, are instrumentalities for performing actions. Tools are a means
to achieve certain ends, and are not, in that context, ends in and of themselves. The efficacy of a
tool is a measure of two fundamental characteristics: the range of actions the tool enables its users
to execute—its amplitude—and the efficiencies one obtains by using that tool—its effectiveness. But
because a tool is a means to an end, the overall value of a tool is inherently indirect; that is, its value
is dependent upon the value of the products that are produced by using it.

Information systems are tools that are used by people to operate an enterprise. Like any other
tool, the value of an information system can only be determined indirectly; that is, by measuring
the degree to which using that system improves the ability of people to achieve the goals of the
enterprise they operate. However, information systems are inherently very complex; they are more
like 5-axis spar mills than hammers. Because of this, information systems require a multitude of
subsidiary tools in order for them to be economically built and maintained. Among these are such
subsystems as operating systems, compilers, and, of course, database management systems.

Database management systems are instrumentalities for performing storage and retrieval opera-
tions on the data that the information systems they host acquire, manipulate, and present to their
users. And, modern large-scale information systems simply could not be built, let alone maintained,
without database management systems. So database management systems are tools. But because
6



                                                      
database management systems are tools for building and maintaining other tools—namely informa-
tion systems—their value is indirect, and is, accordingly, difficult to ascertain.

Pacis is a database programming system, hence it is a tool for building tools—information sys-
tems—and therefore presents the same difficulties in determining its value as does any other dbms.
However, pacis differs from existing database management systems in several important ways. Col-
lectively, these differences make the task of determining an unambiguous measure of its value even
more difficult than it is for existing database management systems. Nevertheless, it is essential that
a means of determining the value of pacis to an enterprise be developed, and that its efficacy in that
context be measured and documented.

The best way to demonstrate the value of a tool is to use it to actually perform the operation or
operations it was intended to support, measure the quantitative features of the process one expects
the tool to effect, and compare these to a known baseline, thereby determining the value of the
tool. Consider: if one is going to determine the value of a 5-axis spar mill, one must, at some point,
actually use the machine to make some wing spars. One must also, of course, make sure while doing
so to measure the amount of time and quantity of resources the mill consumes to make the spars.
Assuming one already had measured the time and resources required to perform the same task using
another tool, one can then compare the two, and thereby determine a relative value.

The strategy adopted to measure and document the value of pacis exploits the fact that pacis—like
any other dbms—is, fundamentally, a tool for building and maintaining information systems. Thus
plans were formulated, under the auspices of a successor program to the aeip, to develop a product
definition management application system—designated mereos—in order to demonstrate pacis
functionality and value. 

The goal of mereos was to solve the multiple bill of materials (bom) reconciliation problem in
large-scale, technically advanced complex product manufacturing environments. The specific
objectives were to provide end users with the ability to define, modify, query, and automatically
maintain relationships between several distinct boms, specification trees, and functional architec-
tures for a single product, where the information involved is stored in geographically distributed
heterogeneous databases. The approach was to use pacis to demonstrate a product data management
system (pdm) meeting these objectives.

2.5 Selection Process

As stated earlier, the motivation for the mereos project was to demonstrate the capability and value
of the pacis technology and associated methodologies. The decision to develop a product definition
management application system for this purpose, as opposed to any number of other applications
one could develop with pacis, was based on several interacting factors and desiderata.

The most important criterion determining the decision was that the demonstration application
system provide a solution to a problem in the manufacturing industry. Specifically, the problem had
to satisfy the following six criteria:

1. The problem had to be well known—i.e., the problem was familiar throughout the manu-
facturing industry.

2. The problem was endemic to both the defense and commercial sectors of the manufactur-
ing industry.

3. In the case of the defense industry, the problem had to be visible to the customer with
direct (and negative) impacts on customer life-cycle costs.

4. The problem had to be tractable to automation and Ontek personnel had to have the tech-
nical expertise and experience required to solve the problem.

5. Solutions to the problem in the form of software could not already exist.

6. There had to be direct, measurable, negative effects on product cost and schedule traceable
to the problem, and the benefits to cost and schedule of solving the problem had to be
equally direct, measurable and traceable.
7



      
The multiple bom reconciliation problem stood out from the others by significant measure in all
the above considerations. A viable technical solution to this problem has eluded all manufacturing
companies, despite many information system-based attempts over four decades. Although there was
an almost unanimous industry consensus concerning the importance of this problem, the root
cause problem was not well understood, nor had requirements for a feasible solution been identi-
fied in any systematic way. It represented the kind of challenge needed to further pacis technology
and methodology developments, as well as to demonstrate their combined value.

Almost all manufacturing enterprises producing complex products also develop separate engi-
neering (e-boms), manufacturing (m-boms), and logistical or field support (l-boms)—representing
‘as-designed’, ‘as-planned’, and ‘as-supported’ product configurations—in order to support various
engineering, manufacturing, and maintenance activities. Further, each of these configurations inev-
itably differ from one another both in form and content. For example, in order to accommodate
empirical producibility constraints, one part on a product e-bom is sometimes made from two or
more parts found only on the product m-bom. In this case, the e-bom will designate only one com-
ponent, whereas the m-bom will designate at least three. This kind of divergence marks the presence
of a relation we call articulation. Conversely, it is sometimes possible to make several parts on an
e-bom from one single ‘progenitor’ part, thereby enhancing process or material utilization effi-
ciency. In this case, the e-bom for that product will only designate these particular components, but
the m-bom will also designate the progenitor and the relationships between it and the particular
components. This kind of divergence marks the existence of a relation we call factorization. Finally,
many parts on a product e-bom and its m-bom—frequently entire assemblies—never appear at all in
its l-bom, because once assembled, the components are not non-destructively accessible. This kind
of divergence signifies the presence of a relation we call integration.

The existence of these divergences among boms together with the correlated but implicit relations
between them is the genesis of the multiple bom reconciliation problem. That is, the task of recon-
ciling multiple boms for a product involves identifying components that stand in these “counter-
part” relations across them, and characterizing the type and characteristics of those relations.
Establishing counterpart traceability is, in turn, essential for executing and propagating the conse-
quences of engineering change. Managing this process is possibly the most complex, costly, and
error-prone activity in any manufacturing enterprise. Identifying and accommodating the ramifica-
tions of even a single modification to one component in one product bom often requires the coor-
dinated expertise of several speciality disciplines, such as materials and process, mechanical,
electrical, and software engineering.6 The multiple bom phenomenon exacerbates this already diffi-
cult problem, since the impacts of changes to a component in one bom must be determined for all
of its counterparts in any other boms. Thus, there is a direct linkage between the multiple bom rec-
onciliation problem and the high costs, long lead times, and error rates associated with engineering
change.

Accordingly, this and other related problems have received a great deal of attention by the manu-
facturing and software industries, and by the DoD. There has been, and is now, a literal constella-
tion of initiatives, software products, and standardization efforts designed to address product
representation issues.7 Nevertheless, none so far have explicitly addressed the bom reconciliation
problem.

The differences that exist between these boms exist for very good business reasons. However,
absent the ability to properly identify and characterize these differences by other than essentially
manual procedures, they become significant cost, schedule, and quality drivers for engineering
change in specific and all product operations and support activities in general. Moreover, the detri-
mental effects of this problem are familiar throughout both the defense and commercial sectors of

6 According to an article in Fortune[9] “Boeing’s fusty production techniques carry an enormous price tag. Every alter-
nation, even a seemingly minor one like moving the location of an emergency f lashlight holder, consumes thousands
of hours of engineering time, requires hundreds of pages of detailed drawings, and costs hundreds of thousands, if
not millions, of dollars to execute.” The f lashlight example is perhaps a bit overstated, although the point is, in
essence, valid. This situation is not unique to Boeing, nor is it unique to the aerospace and defense industry. 

7 A notable example of these is pdes/step. We have included a brief outline of step as it pertains to specific issues
addressed by the mereos program in Attachment 1: Comments Concerning STEP. 
8



the manufacturing industry. Moreover, these effects were considered measurable (at least with
some effort). We viewed the problem as tractable to solution using pacis technology. Ontek person-
nel have had a great deal of prior experience with this problem domain. A solution to the problem
required the full representational power of pacis, and thus was considered a good demonstration of
pacis functionality. And, no system existed that was specifically designed to address the root cause
of the problem. Finally, the multiple bom reconciliation problem satisfied all 6 of the criteria listed
above. Accordingly, it was chosen as the application domain to use to demonstrate the new version
of pacis. 

2.6 Program Execution and Evolution

Mereos program execution was structured into three distinct phases in accordance with Enabling
Technology Developments and Demonstrations Agile Manufacturing Pilot Program (etdd/ampp)
project requirements. These were:

Phase I Technology Feasibility Dec 94–Dec 95

Phase II Prototype Demonstration  Jan 96–Dec 98

Phase III Pilot Production Implementation  Jan 99–Jan 00

The original mereos Statement of Work (sow) addressed Phase I and II tasking. Phase III was an
option which required separate authorization and a second specific sow. All three phases were exe-
cuted. 

The mereos program was originally conceived as an information systems-centric effort to identify
the requirements for and demonstrate a solution to the multiple bom reconciliation problem. While
these original program objectives were accomplished, the program underwent several significant
changes both in focus and application venue during its execution. We set out to solve a difficult and
long-standing informatics problem—we accomplished that, but also ended up solving several enter-
prise systematics problems as well, creating a baseline for a new aerospace enterprise operating sys-
tem. This shift warrants discussion.

2.6.1 Change 1: An Increase in Representational Amplitude

Preliminary analysis of the root causes of the multiple bom reconciliation problem had been done
prior to Phase I. This work was documented and subsequently published by Kluwer in 1995 as Aspects
of the Mereology of Artifacts [20]. Phase I sow tasking provided for more comprehensive and detailed
analysis of the problem, definition of requirements for a solution, and research and development
activities to demonstrate solution feasibility. 

The first change involved an increase in the representational gamut planned for the Phase II sys-
tem, which occurred as a result of Phase I findings. One specific Phase I determination was that an
effective solution to the multiple bom reconciliation problem necessitated mechanisms for explic-
itly representing traceability of product structures to so-called ‘design intent’—that is, traceability
of product definition elements, represented by various boms and document trees, to functional,
producibility, and maintainability requirements. This in turn entailed the capability to explicitly
represent relevant products of the systems engineering Needs Identification, Requirements Analy-
sis, and Synthesis processes, namely technical requirements and their relations to product defini-
tion elements. This ‘upstream’ increase in representation amplitude was required to provision
‘downstream’ product structure definition management—specifically, engineering change impact
identification and analysis.8

2.6.2 Change 2: A Shift in Technical Focus

The second change occurred in the early stages of Phase II, and represented a shift in technical con-
ception and focus rather than in breadth. Its impetus was partly due to the increase in representa-

8 The need to explicitly represent technical requirements and their relationships to product structures is discussed in
Section 3: Results Part I, paragraph 3.1.2. 
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tional amplitude mentioned above. But this shift was also driven by a need to address an
increasingly exasperating strategic positioning problem, itself symptomatic of what we call the
Commercial Off-The-Shelf (cots) problem. 

Mereos software was originally envisioned to be a stand-alone pdm application system for demon-
strating multiple bom definition and reconciliation capabilities to end users, thereby illustrating the
value of pacis technology to those stakeholders. However, the increase in representational scope
required to completely solve that problem was significantly greater than originally anticipated, and
accommodating this change in turn forced a change in the level of effort mix between formal sys-
tematics and programming. Constrained by fixed resources and schedule commitments, greater
emphasis on formal systematics had to be compensated for by a reciprocal reduction in software
development. Reducing software development level of effort without sacrificing the core technical
capabilities required to achieve our solution demonstration objective necessitated a software archi-
tecture change—a change from an end user-oriented application to a developer-oriented tool,
focused exclusively on providing application-independent product structure representation and
integrity management services. We retained the effort to develop interfaces for visualizing these
structures, and we of course retained the development effort required to implement the representa-
tion constructs required; this was, after all, the critical element of the engineering effort. However,
we abandoned sweeping enhancements to the i/o and foreign system integration subsystems we had
originally envisioned developing, along with development of a new interpreter and compiler for the
pacis database programming language, as neither of these would, in and of themselves, convey visi-
ble value to end user organizations. Although frustrating at the time, this necessary change in focus
turned out to have been very fortuitous indeed, for both technical and strategic reasons.

One strategic benefit of the focus change and the resulting architectural repositioning was made
abundantly clear during a meeting we held in early September 1996. The objectives of this meeting
were to present to industry the results of our multiple bom problem analysis, demonstrate a proto-
type illustrating key elements of a solution, and solicit a demonstration site for Phase III of the pro-
gram. The meeting was attended by 18 organizations including all the major aerospace and defense
prime contractors, Deere, and Caterpillar. The results of this meeting were simply astonishing. They
were also ominous from a business point of view. The upshot was this: no one seriously challenged
the results of our problem analysis nor our characterization of the necessary elements for a solu-
tion. But without exception, every single person there representing a potential demonstration site
expressed strong reservations about using any “non-cots” solution in their organizations—even in a
demonstration context. Not even two years earlier, these same companies had all stated to us and to Air
Force ManTech management that the multiple bom reconciliation problem was a major cost, sched-
ule, and quality driver, and that a solution to that problem would be of great value to them and to
the rest of industry. Now they were saying that such a solution would have value only if it was avail-
able from a software industry analog of KMart.9 Subsequent to this exasperating and disappointing

9 Air Force ManTech is not in the business of funding the development of commercial software. Their essential mission
is to identify and cogently articulate industrial base capability voids vis-a-vis DoD weapon system acquisition and
sustainment needs; define requirements for solutions to eliminate those voids, develop fundamental enabling tech-
nologies and critical elements of those solutions where required, where appropriate, and to the extent necessary to
demonstrate feasibility; and, to incentivize industry through programmatic and other mechanisms to pursue develop-
ment and deployment of those solutions. This is not to say ManTech is unconcerned with commercial viability—it is.
Eventual commercialization is one tactic among many to disseminate new ManTech-sponsored technology and solu-
tions. 

In that vein, ManTech made it a mereos program requirement that we develop a comprehensive business strategy for
pacis technology commercialization. We initiated a strategic planning activity in early 1996 to satisfy that require-
ment, and by May of 1996 we had produced the first of several documents that would eventually become components
of a documented Ontek business plan. This first document was an assessment of relevant environmental factors and
trends, specifically focused on post-Cold War downsizing of the defense industrial base, the transformation of the
software industry from a requirements-driven engineering-oriented industry to a market-driven commodity busi-
ness, and on the implications—almost all negative—of those two factors for pacis technology commercialization. It
was quite a shock to see our predictions concerning attitudes of A&D contractors towards advanced information sys-
tems technology stated in that May document be completely validated—with a vengeance—the following September. 

We presented the first version of the complete business plan to ManTech management in February 1997, and pre-
sented updated versions in September 1998 and March 1999. 
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episode, we attempted to overcome this Catch-22 in meetings with Deere, Caterpillar, and Lock-
heed Martin Aeronautical Systems in Georgia (lmas), and to convince at least one of them to act as a
Phase III demonstration site. We eventually succeeded at lmas, only because we were able to show
that mereos was not a commercial pdm or erp system competitor, but was rather an “add-on module”
or “plug-in” to those systems—a “structure server”—that is, a developer-oriented tool, not a stand-
alone application system. In other words, if we had not had to shift our technical focus and make
the requisite change in mereos software architecture, we would have not secured a Phase III dem-
onstration site. Nor, to anticipate the subject of the third change described below, would we ever
have been presented with the opportunity to participate in the re-design of a major prime contrac-
tor enterprise, or produced a major mereos program result—a baseline design for a new aerospace
enterprise operating system. 

The technical advantages gained as a consequence of the focus change were equally compelling if
not more so. With the resources allocated to executing the abovementioned enhancements freed
up, we able to bring a great deal of effort to bear on developing the formal systematics required to
represent the abstract intentional structures underlying systems engineering processes and their
products. 

We had, among other things, demonstrated fully declarative and directly executable representa-
tions of processes in two prior versions of pacis. Although many of these were very complicated,10

the structures involved were nowhere near the level of abstraction of those underlying systems
engineering processes and their products. And it was precisely these structures that had to be
explicitly represented if the increase in mereos representational amplitude was to be accomplished.
Moreover, systems engineering is a formal process; however, most of the structures constituting its
conceptual underpinnings have not, as yet, been formalized. That is, definitive and detailed
descriptions of systems engineering processes and products were readily available, but suitably
detailed formal characterizations of core systems engineering entity types were not.11 Nevertheless,
formal characterizations—technically, formal taxonomic delimitations—are essential raw materials
for implementing computer-interpretable representations of anything, including these and other sys-
tems engineering entity types. We accordingly undertook to develop them, though this was not a
trivial undertaking for two principal reasons. First, all of the principal conceptual structures under-
pinning systems engineering are, to varying degrees and in different guises, active subjects of cur-
rent phenomenological and ontological research. In fact, the very notion that intentional structures
are tractable to formalization at all, at least without eliminative reductions to the extensional struc-
tures of logic and set theory, is very recent and in some quarters is still vigorously disputed.12 Sec-
ond, we had begun a complete re-design of pacis meta-level representation structures—pacis
metasystematics—just prior to mereos. Motivated by numerous lessons learned from our experiences

10 For example, to demonstrate subsumptive integration of foreign systems in pacis during the Northrop/Air Force Auto-
mated Airframe Assembly Program (aaap), we developed a complete declarative representation of the entire ims data-
base management system schematics—its representation structures, data definition, and data manipulation language
operators—and we used this implementation metascheme as the basis for a pacis subsystem that automatically gener-
ated representations of ims database definitions, and another that generated-hoc queries against them during execu-
tion of pacis process representations. Ims is notoriously complicated; as one Northrop database administrator and
systems programmer once remarked: “If you can ‘do’ ims, you can do anything.” Well, not quite: you can’t ‘do’ systems
engineering requirements traceability management automation, for example…

11 Examples of these are entity types such as requirement; derivation, allocation, and synthesis (the relations), and
Measure of Effectiveness (moe), This absence of formalization despite mature practice is analogous to the situation in
mathematics. Mathematics as a formal enterprise is at least 2,400 years old, but systematic efforts to formalize Number
itself only began in the late 19th century. Among other things, efforts to formalize the foundations of mathematics
led to the development of electronic computing machines. This analogy demonstrates that a great deal of both prac-
tical and theoretical work can be accomplished without ref lective formalization, but implementing intentional pro-
cesses in terms of computer programs can’t be. 

12 For that matter, phenomenology as a distinct philosophical discipline is itself less than 120 years old, and formal
ontology is only 100. The criticisms of so-called “artificial intelligence” leveled by Hubert Drefus and his fellow-trav-
elers are an example of one dimension of the controversy over the formalizability of intentional structures. Our
favorite counter to certain of these arguments is a quip by John Searle: “Of course the background can be represented.
Here goes: ‘the Background’.” [18.1] Although unhelpful from a software engineering perspective, it’s clever and
funny. 
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with the prior version of the system, the aim of this effort was to put the metasystematics on new
and completely self-applicative foundations, and to systematically re-derive the principal schematic
elements of the representation system from those.13 

Metasystematic structures are by definition the most abstract possible and self-applicative meta-
structures are the most intricate; they are the elements of pure autothetic form. It is accordingly
necessary from a practical standpoint to inform metasystematic efforts with concrete and suitably
illustrative examples. It is also a formal necessity to partly evaluate the results of such efforts in
terms of their capabilities to explicate these and any other possible exemplars. The conceptual
structures of systems engineering were an excellent addition to the examples we had already been
using for this purpose.14 Their intimate relationships to product and process structures meant they
were germane to the other examples we were using to inform this endeavor. However the fact they
are essentially intentional meant they were very different in kind from the others, and the need to
systematically explicate these taxonomic ‘gaps’ in terms of metasystematic constructs represented a
decidedly non-trivial ‘stretch’ for our efforts. But it was the differences between the three example
sets that was actually, in the final analysis, the big payoff—or rather, the solution to the problem of
developing the requisite metasystematics to subsumptively and systematically explicate these differ-
ences was. The solution to this problem, which we call the structure abstraction or structure factorization
solution, represented a major technical advance achieved by the program, and, as we will see
shortly, it provisioned us to take advantage of a major strategic opportunity as well. 

None of this work was visible to any pacis stakeholder except the formal team; it is the nature of
abstractions to be invisible except through their concrete instances. However, the new metastruc-
tures greatly enhanced our understanding of the structures underlying systems engineering, system-
atics, and artifacts, and that deeper understanding was manifested to others in our abilities to
clearly articulate the root causes of and the necessary characteristics of solutions to problems like
the multiple bom problem. 

2.6.3 Change 3: Mereos Phase III, Redefined

The third change was both a radical shift in focus and a major change in venue. It transformed
mereos from an information systems program focused on tactical product representation problems
into an enterprise architecture program, focused on the strategic issues involved in designing a new
aerospace enterprise operating system. 

We mentioned earlier that after lengthy discussions with several organizations, lmas had agreed
to serve as the mereos Phase III demonstration site. This agreement was reached in mid-1997. Dur-
ing 1998 we held a series of discussions with lmas personnel in Marietta to solidify the details of
this agreement, to select a particular program to host the Phase III demonstration, and to define
specific objectives, mutual responsibilities, and qualification criteria for the demonstration system.
Over the course of these discussions, our understanding of lmas product definition and representa-
tion practices deepened, as did our familiarity with two related information systems implementa-
tion initiatives. Participating lmas personnel also gained a comprehensive understanding of mereos
technology and its relationships to those practices and initiatives. 

Like any other classical aerospace prime, many lmas processes and associated practices were divi-
sionalized along programmatic lines. These included the Product Realization process, many of its
subprocesses—notably Product Definition—and its related product representation practices.

13 The most critical metasystematic structures were the taxon and concrescence taxa and their primary noumenal deriv-
atives occurrent and continuant. The principal schematic elements of representation system are entity and inten-
tionality. These are derivatives of the primary noumenal taxa, and they constitute the superstructure of the
representation system. 

14 The two example sets we had been using before this change occurred were complex product and process structures
and those of biological systematics—the latter being the most well-developed and explanatorily powerful we know
of. In fact, the pacis metasystem is a generalization and self-applicative abstraction of biological systematics. It is a
generalization because our representations must encompass more than living things. It is an abstraction in that such
things as similarity, delimitation, and identification (and their numerous variants) are all taxa, and it is self-applica-
tive in that taxon is itself also a taxon. The relevant corners of the metasystem (the phylogenetic taxonomy of simi-
larity and that of taxon itself) are depicted by Figures 31 and 28 in Attachment 2, respectively. 
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Extreme differences in program age had also brought about even greater divergences between each
program-specific variant of these processes, well beyond the norm. For example, c-130 is a very
mature program; deliveries of the first production aircraft had been made in December 1956. The
c-130 product definition is accordingly historically deep and systemically broad, at that time
encompassing 42 years of engineering, countless variants, models, and options—many of which
were still actively being produced—and it also included the c-130j: “an entirely new airplane.” In
contrast, f-22 was still in pre-first f light emd. Unsurprisingly, c-130 Product Realization processes—
especially c-130 Product Definition and engineering release processes—had very little in common
with their f-22 counterparts beyond superficial similarities due to shared materiel, finance, and hr
functions. Most importantly to us, their product representation practices and product data conven-
tions differed dramatically, and so did the information systems each program used. 

An initiative to establish a common Product Definition process across programmatic lines had
been underway for some time prior to our engagement with lmas. Impelled by looming f-22 and
c-130 j production program cost reduction needs, this initiative had adopted the approach of creat-
ing a common process via use of a commercial pdm software package. In early 1998 a second initia-
tive to establish common Product Delivery and supporting infrastructure processes had also been
formally launched. Also impelled by f-22 and c-130j program needs, this initiative was focused on
creating commonality via use of a commercial erp software package. These two initiatives were
similar in several respects. Both were mandates of Lockheed Martin Aeronautics Sector headquar-
ters; lmas was their first target implementation site (the other sector companies were to follow);
each was predicated on an explicit “cots only” policy; and neither was going to be capable of
addressing real lmas product representation needs—although this latter point was only understood
by a small cadre of lmas cognoscenti, and was not generally recognized by either of the teams lead-
ing these two initiatives or by lmas and Aeronautics Sector management. 

In light of this situation, two facts had become increasingly clear at this stage of our discussions
with lmas. The first was that demonstrating the mereos solution to complex aerospace product repre-
sentation needs and requirements would not constitute much value for lmas. The second was that
exploiting our command of the relevant product representation requirements to support their enter-
prise process improvement and related information systems implementation initiatives would con-
stitute value for lmas. 

To help address the product representation capability shortcomings of these initiatives, and to
contend with the impedances to the mereos Phase III demonstration objectives presented by them,
we, together with our internal lmas sponsors, undertook a vigorous and concerted effort to bring
the relevant requirements to the attention of all concerned. To accomplish this we conducted a series
of presentations to demonstrate the specifics of complex product representation needs and require-
ments to both teams; we wrote and distributed documents outlining these; and we demonstrated
software to illustrate key capabilities that any candidate solution offered by either of these initia-
tives would necessarily have to provide. Thus all throughout 1998, we played the role of Product
Definition and Product Representation process architects, emphasizing our command of the relevant
requirements, and de-emphasizing our capabilities to produce information system solutions to
those requirements, except as a vehicle for demonstrating the feasibility of developing systems to
provide the requisite capabilities. 

During 1998 we had also taken on an architectural mantle in another lmas initiative as well, puta-
tively unrelated to the Sector-mandated pdm and erp initiatives. Lmas leadership had started an
enterprise productivity (ep) initiative in mid-1997, motivated both by programmatic and by strategic
needs to enhance lmas competitiveness by improving enterprise process efficiencies and overall
effectiveness. Cognizant of our prior work on similar programs in other companies, the leader of
the lmas ep initiative brought us in to assist in developing a strategic plan for governing and execut-
ing the lmas ep program. We produced two substantive contributions to the program as a result of
this effort. First, we developed a formal strategic plan for the EP program which was explicitly linked
and thus directly traceable to both the lmas company and Aeronautics Sector strategic business
plans. The principal tactical element of that strategic plan was a program to develop and deploy a
new lmas enterprise architecture, and the second product we produced was a detailed plan for that
program. 
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Both of these activities were heavily dependent, albeit in different ways, on the metasystematics
we had developed to support mereos representations of the abstract intentional structures underly-
ing systems engineering processes and their products. In fact, we would not have been able to exe-
cute either of these architectural efforts without first having had these results in hand. The Product
Definition and Representation needs and requirements analyses we presented to the pdm and erp
teams were developed using our formalization of systems engineering methods, and they were
framed in terms of those structures. The formal scheme used to define the ep strategic plan and its
explicit traceability to the lmas and Sector strategies was a direct result of our applying a generaliza-
tion of systems engineering methods to strategy development. And most significantly, our approach
to developing the lmas enterprise architecture was predicated on the use of new formal methods,
based on the synthesis of biological systematics and systems engineering we had developed as a
result of our effort to re-design the pacis metasystem. 

It had also become obvious to the most casual of observers as a result of our activities during 1998
that the original objectives for Mereos Phase III were going to have to be re-structured to accom-
modate lmas realities. Then a truly fortuitous event occurred: a new lmas president was appointed
in early 1999, and his personal mission was to “re-invent” lmas. The opportunities presented by this
leadership change to all mereos program stakeholders were utterly clear. The new president was
briefed on the proposed enterprise architecture program and our envisioned role in it in early
March. We consulted with cognizant Air Force personnel to discuss our participation in this pro-
gram under Mereos Phase III auspices. Lmas agreed to match Air Force funding to support the
changes and increases in Phase III tasking, and in May of 1999 the Lmas Enterprise Architecture Pro-
gram (leap) was officially launched, fully supported by an Ontek team. This last and most far -
reaching of the major changes marking the evolution of the mereos program had occurred. 
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The ship wherein Theseus and the youth of Athens returned had thirty oars, and was
preserved by the Athenians down even to the time of Demetrius Phalereus, for they took
away the old planks as they decayed, putting in new and stronger timber in their place,
insomuch that this ship became a standing example among the philosophers, for the
logical question of things that grow; one side holding that the ship remained the same,
and the other contending that it was not the same. 

 

Plutarch, 

 

The Life of Theseus
3 Results Part I: Product Structure Definition and Management
The two primary mereos program objectives were first, to identify the root causes of the multiple
bom reconciliation problem and define the requirements for a solution, and second, to prove, via
demonstration, the feasibility of developing a system to implement that solution. Both of these
objectives were achieved. That is, we produced a rigorous and detailed definition of formal require-
ments for a product data management system—one capable of addressing the real needs of both
aerospace and defense contractors and other manufacturing enterprises that produce complex,
technically advanced products. We also developed and demonstrated software that proved the feasi-
bility of creating a system that satisfies those requirements, thereby also achieving our aim of dem-
onstrating the value of pacis technology in a strategically visible business context. 

But success defined in terms of achieving programmatic objectives is not necessarily coincident
with delivering value to stakeholders. Nor is the value realized by achieving one objective necessar-
ily equal to that of the others. In fact, for reasons we will brief ly sketch now, the formal require-
ments definition we produced is of much greater potential value to industry—and thus to ManTech
and DoD—than the software we built and demonstrated. 

Consider the following facts. Every major prime contractor has developed and implemented at
least one product data management system. Most have created and used several. Many “commercial-
off-the-shelf ” (cots) pdm systems have been available for some time. Every major prime contractor
has licensed and is using at least one of those as well. Despite this abundance however, familiar and
long-standing product representation problems continue to hinder industry efforts to lower costs,
improve quality, and reduce cycle time. The multiple bom reconciliation problem is simply one
illustrative example of these problems. Given these facts, it should be obvious that what aerospace
and defense contractors and their commercial peers do not need is yet another pdm system. What
they do need is an effective, implementable, sustainable, and total solution to all of the requirements
deriving from their product representation needs. And it is also a fact that no such solution exists,
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notwithstanding the claims of some software vendors to the contrary. Moreover, a pdm system will
never constitute a complete solution to product representation requirements: regardless of its capa-
bilities, an information system is only one element among many necessary to realize a total solution
to those requirements.15 Thus even if a system with the requisite capabilities to address real product
representation needs existed—and it doesn’t—or even if the mereos program had produced a com-
mercially available production version of such a system—and this was not a mereos program objec-
tive—such a system would only constitute a partial solution.

Several factors are impeding development of a truly effective, albeit partial, information system
solution. These in combination with others are inhibiting development of a total solution. None are
mere programming problems. Nor for that matter are they ultimately methodological, organiza-
tional, or even strategic issues, although many of these are symptomatic of the underlying root
causes. The truly operant impediments are conceptual—they are formal process problems. Specifically,
they are Product Representation and superordinate Product Realization architecture problems. To be
precise, the two greatest obstacles blocking development of both a total enterprise solution and an
effective information system solution are the absence of cogent requirements definitions and the
consequent lack of implementable balanced designs for these processes. 

In the light of these facts, it should be clear why our development of an experimental pdm appli-
cation to demonstrate an entirely new kind of information system, no matter how powerful, repre-
sents little strategic value to external mereos program stakeholders. It should be equally clear why a
comprehensive needs analysis and systematic requirements definition for the Product Representa-
tion process does constitute significant value to those stakeholders—it is impossible to provision a
poorly understood process with an effective information system, and it is counterproductive to
automate the data creation and management activities of a f lawed one. 

Real complex product representation needs primarily consist in structure multiplicity, other spe-
cific dimensions of representational amplitude, and concomitant correspondence and integrity. The
critical requirements comprise 17 specific metastructures, 3 classes of functional capabilities, and 2
primary supervening organizational and enterprise process requirements. As far as we have been
able to ascertain, these results constitute the first formal systematic explication of complex product
representation needs and requirements ever produced that is explicitly focused on meta-level struc-
tures and situated in a total enterprise operating system context. Because of its intrinsic value to
industry, and thus ultimately to ManTech and DoD, this needs analysis and requirements definition
is the focus of our presentation here. 

3.1 Product Representation Needs

Product Realization is the primary enterprise mechanism for delivering customer value and is, accord-
ingly, the core process of any manufacturing enterprise. This process constitutes a technical and
customer-centric axis of Solution Realization, one of the three major enterprise processes, and it
is aligned with the product life cycle in ways we only touch on here. The primary external inputs to
Product Realization are technical customer needs. Its principal outputs are product/process systems
exemplifying the performance and effectiveness characteristics required to satisfy those needs. As
depicted in the figure on the following page, there are three major Product Realization subpro-
cesses: Product Definition, Development (sometimes called Production or Delivery), and Support. The
first two of these directly constitute phases in the product life cycle. Product Support does not,16

although this does not impact the product structure definition and management issues that concern
us here.

15 Other notable elements of a total product representation solution are suitably capable Product Representation and
Realization processes, properly aligned organizations to optimally execute and govern those processes, and requisite
infrastructure for provisioning them both. These and other crucial enterprise operating system elements are dis-
cussed in Section 4: Results Part II. 

16 At least as classically understood and as executed by manufacturing enterprises. Product Support is a logistics-centric
cut through customer processes involving use of manufacturing enterprise products. Interdiction [using an f-] and
Harvesting [using a Deere 9750 sts combine] are examples of customer processes that can be instrumentalized by
these products. Spareing, which is classically executed by the producing manufacturing enterprise, is a prosaic example
of a logistics-centric cut through both of these. 
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The principal inputs to Product Definition are instrumentality capability voids—technical needs.
Its primary outputs are complete prescriptive system delimitations—‘total definitions’—verifiably
representing technical solutions to the requirements deriving from those needs. The principal
inputs to Product Development are descriptive and executable elements of product definitions
called “build packages.” Its primary outputs are deliverable systems demonstrably realizing those
definitions and related documentation. Aside from the deployed products themselves, Product Sup-
port inputs are diverse but mainly comprise logistics (spares, test equipment, etc.) and product def-
inition elements collectively called “tech pubs.” These latter generally fall into two groups:
descriptions of product operations and executable sustainment definitions. Its principal outputs are
product systems in states of operational readiness (including requisite provisioning), improvement
requests and defect identifications, and, ultimately, product system retirements or disposals. 

Even these superficial characterizations should make it clear that product data are the primary
information assets required to provision, execute, and govern the Product Realization process. All
Product Realization subprocesses and activities both require and generate specific types of product
data. Moreover, these data are utterly pervasive. With few exceptions,17 all manufacturing enterprise
processes and activities depend on product-related data in some way, albeit to differing degrees,
and all generate product-related data, though of diverse and in some cases only indirectly con-
nected kinds. Thus the efficiency and effectiveness of all enterprise processes are intricately but
nonetheless directly related to product data completeness, fidelity, and availability—and, conse-
quently, so is the strategic vitality of these enterprises. Given the nature of manufacturing and the
central role of the Product Realization process in such enterprises, this is hardly surprising. 

Product definitions comprise both the integrating superstructure for product data and the schematic
underpinnings of all other enterprise data—they are the conceptual cornerstones of the manufac-
turing enterprise. Representing product and other related entity types, their structures, variants,
attributes, and relationships among these, product definitions are the premier information assets of
any manufacturing enterprise. For organizations that create complex technically advanced products,
they are also major strategic assets, and for aerospace and defense contractors, they are capital
deliverable products as well, requiring years of effort by legions of skilled people to produce, and
substantial infrastructures to maintain. Engineering defects—f laws or deficiencies in product defi-
nition content—have serious operational, economic, and hence strategic consequences for product
users and for the manufacturing enterprises that produce them. Formal representation defects—
f laws or deficiencies in product definition informatics—also have severe impacts on Product Realiza-
tion process performance and effectiveness. Unlike engineering defects, informatic deficiencies are

17 Certain extrinsic regulatory compliance activities such as eeoc reporting would be one example. 

Figure 2.  Product Realization Process Elements
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invisible to product users and only obliquely visible to producers, as they tend to be obscured by
the very visible and negative effects of several pervasive Product Realization problems. Engineering
release, logistics integration (so-called “supply chain integration”) and engineering change propaga-
tion are three notable and inter-related examples of these problems. Informatic deficiencies lie at
the center of them all, and many others besides. 

Thus even at this shallow level of analysis, two intrinsic elements of Product Realization immedi-
ately stand out as critical enablers of enduring superior capability. The first is the process of produc-
ing and sustaining product definitions—call that the Systems Engineering process. The second is the
process of producing and sustaining the informatic metastructures and systems that frame product
definitions, which we will call the Product Representation process. 

As we conceive of it here, the Systems Engineering process is Product Definition. More precisely,
it is a specific configuration of that process tailored for rigorously defining complex products that
typically require substantial capital investment and novel technology to develop, and extensive
infrastructure to use and sustain, usually over decades of service life. But Systems Engineering is,
nevertheless, the Definition subprocess of the Product Realization process. The Product Represen-
tation process is not, in contrast, a Product Realization subprocess—it is, rather, a particular variant
of that entire process. That is, invoking the context of enterprise architectures, Representation is the
Product Realization process itself, applied to informatics.18 Its principal products are information sys-
tems—instrumentalities for provisioning decision-making processes; tools of purposeful thought.
Product Representation is simply Representation applied to product informatics, and its information
systems products are tools for provisioning intentional activities involved in the Product Realization
process, including—but certainly not limited to—Systems Engineering analysis, synthesis, and evalu-
ation. 

A great deal of focused expertise has been brought to bear over the years to define Product Real-
ization as a formal process. The Systems Engineering process in particular is very well understood
and thoroughly codified, as the large body of good quality specifications and textbooks describing
it demonstrates. On the other hand, understanding of Product Representation as a formal process in
its own right is not mature, although several efforts to ameliorate this have yielded considerable
progress and have produced significant benefits for industry.19 But the continued existence of prob-
lems such as multiple bom reconciliation are symptomatic of the fact that at least some core product
representation needs have not yet been cogently identified and articulated—a least not to the
extent necessary to enable viable solutions to these problems to be developed.20 We will now turn
our attention to these needs. 

18 Actually, Representation is Solution Realization applied to informatics; and is therefore a variant of that process as is
Product Realization. However the systematic complexities of the distinctions between these two processes need not
concern us here. 

19 Pdes/step [13] is a notable example. This family of standardization efforts has produced great deal of quality work
aimed at standardizing product definition data to facilitate its exchange among differing information systems. 

20 To be fair, many product representation problems sit directly on the shoulders of long-standing and elusive ontologi-
cal problems; it is not surprising some of these are so resistant to solution. For example, the nature of Part-Whole and
Dependence relations (AssemblyfiComponent and PartfiMaterial relations in boms) were studied in detail by Aristo-
tle, but formalizations of these useful for producing product representation systems were only developed very recently
[20]. The nature of change, substance, and the status of artifacts are subjects of long-standing philosophical debate, as
is illustrated by the quote from Plutarch at the beginning of this section. Engineering change impact identification,
propagation, and traceability management problems are directly related to these questions. There is in fact a much
closer relationship between product representation problems and some protracted philosophical issues than one
might initially suspect, and some philosophical work to address these (though not as much as one would hope) is
directly relevant and helpful. It is certainly possible to build an pdm system without understanding the intricacies of
these and other related issues; people have done so for years. It is not possible to produce one that solves the prob-
lems we are concerned with here without such an understanding and an ability to encode that understanding in a pro-
gramming language. You can’t hand-wave a c++ compiler: you can’t represent something you don’t know exists in a
struct statement, and you can’t automate a process you don’t understand in c++ code. 
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3.1.1 Structure Multiplicity

Product definitions are representations of artifact types. Artifacts are entities which are designed and
created by certain specific intentional processes, or which are instrumentalities used by intentional
agents to execute processes, or both. Types are taxa; groups of related entities. Representations are
artifacts of intentional processes that objectify—i.e., present—other entities to intentional agents.
Many kinds of product data are representations of artifact taxa. Some represent individual members
of artifact taxa. Process architectures depicted by functional f low diagrams and correlated synthesis
architectures represented by e-boms, m-boms, and l-boms are common examples of the former. Indi-
vidual physical architectures represented by serialized “as-built” and “as-repaired” boms are exam-
ples of the latter. Both kinds are of interest to us here. 

It is an empirical matter of fact that a given product can, and almost invariably does, actually
instantiate multiple coincident and divergent structural configurations. That is, there is no such
thing as “the” structure of an artifact type or even of a particular individual artifact, if by the term
“the” one means a single incontingent and invariant structure. It is a formal matter of fact that the
origins of many divergences among these configurations are contrasts among relations between
artifacts and concrete processes. It is consequently a pragmatic matter of fact that the differences
between these exist for both formal and practical reasons. Hence it is an analytic fact that these
classes of divergence cannot be explicated in terms of mere representational conventions, or differ-
ences among ‘views.’ And finally, it is an effective fact that they also comprise one major root cause
of product realization and representation problems—most notably the steep costs, long lead times,
and high error rates associated with propagating engineering change in complex manufacturing
environments. We will support and illustrate these arguments by first enumerating some represen-
tative types of structural configurations, and then follow that with some specific examples of dif-
ferences among them. Note however that the phenomenon of structure multiplicity is much
broader and more complicated than is conveyed by these specific examples, and, accordingly, so are
its representational consequences and the corresponding need. 

3.1.1.1 Representative Structure Types

All complex product systems exemplify at least four distinct and specific structural configurations:
nominal, constructive, sustainment, and effective configurations. Each of these differ from the others both
in form and in content. Effective configurations are determined by application contexts and are,
accordingly, related to processes in which product systems are used in instrumental capacities to
execute these processes. The first three configurations are correlated to and conditioned by prod-
uct life cycle phases, and are, accordingly, related to major Product Realization subprocesses in ways
we will describe in more detail below. 

❙ Nominal Configurations and E-Boms

The e-bom for a product system such as the f- represents its abstract physical architecture. This
architecture defines an instrumentality for realizing the operational axis of the f- functional archi-
tecture and its attendant performance and effectiveness requirements. It is produced by a systems
engineering process called synthesis, and the physical architecture it represents ref lects a ‘top-down’
focus on synthesizing these operational requirements. Accordingly, all elements constituting that e-
bom must be traceable to—meaning they are verifiable solutions to—at least one of these require-
ments. Thus every particular f- must veridically instantiate the structure represented by the f- e-
bom; if it doesn’t, it is defective—it is not a valid material realization of that axis of the functional
architecture.21 Should it be f lown in that condition, it likely would not be capable of executing its
mission with the requisite degrees of performance and effectiveness. 

21 Lockheed won’t get paid if it doesn’t either. The customer pays based on acceptable integration and f light test results,
and thus pays indirectly off the e-bom. 
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❙ Sustainment Configurations and L-Boms

The l-bom for a product system represents its abstract infrastructural architecture. This architecture
defines an instrumentality for realizing the logistic axis of the functional architecture for the product
system and its attendant reliability and supportability requirements. Like an e-bom, an l-bom is also
a product of the synthesis process, and the physical architecture it represents ref lects a concomitant
‘top-down’ focus on synthesizing these integral logistic requirements. Accordingly, all elements
constituting an l-bom must be traceable to at least one of these requirements, and every deployed
product must veridically instantiate the structure represented by its l-bom. If fails to do so, it is defi-
cient—it is not a valid material realization of that axis of the functional architecture. Should it be
used in that condition, it likely could not be maintained in the necessary state of readiness to exe-
cute its mission with the requisite degree of reliability. 

❙ Constructive Configurations and M-Boms

An m-bom for a product system represents a specific realization architecture. This architecture is the
structural complement of a specific and qualified production process architecture and its attendant
cost, schedule, and quality requirements. Both this process and its correlate m-bom are produced by
a process typically called manufacturing engineering, and the specific structures they represent ref lect a
‘bottom-up’ synthesis of realization requirements required to actually implement the abstract phys-
ical architectures represented by the e-bom and l-bom for a given product system. Accordingly, all
m-bom elements must be traceable to at least one e-bom or l-bom element, and be traceable to
requirements ref lecting producibility, availability, socio-economic, and regulatory constraints. Thus
every particular f- must veridically instantiate the structure represented by the f- m-bom; If it
doesn’t, it is invalid—it was not verifiably produced in accordance with a qualified production pro-
cess. Should it be accepted in that condition, it may not be possible to validate its traceability to its
specified abstract physical architectures, and, therefore, to its functional architecture, rendering
both its requisite operational status and logistical qualifications indeterminate. 

❙ Derivative Configurations

The configurations described above comprise actual matters of structural fact correlate to a specific
processual architecture—albeit diverse and in some cases only contingently or periodically oper-
ant—and, consequently, their respective boms are intended to veridically represent those particular
structures. Together with a few others we did not enumerate here, these foundational or genitive
configurations collectively delineate the class of structures connected with creating, using, and sus-
taining complex technical systems. 

A second class of configurations also exists, over and above genitive configurations. Created from
and supervening on these, derivative configurations comprise analytic matters of structural fact keyed
to specific and purely intentional operations involved in creating, using, and sustaining complex sys-
tems. Developed to facilitate the execution of these processes by selectively abstracting from the
structures of other configurations, derivative configurations are also associated with specific repre-
sentational constructs specifically designed to convey their particular analytic structures. Compris-
ing redactions of other structural configurations, derivatives are idealizations, and unlike the
representations of genitive configurations, their representations are views. 

The most illustrative examples of derivative configurations are those used in resource and pro-
duction planning, scheduling, and cost accounting operations. Created by abstracting from nominal
and constructive configurations, these configurations are represented by various special-purpose
“pseudo” boms, such as “modular,” “phantom,”, and “f lattened” or “matrix” boms.22 Logistical ana-
logs of these exist as well, comprising redactions of nominal and sustainment configurations. Being
artifacts of analysis explicitly designed to facilitate subsidiary intentional processes, derivative con-
figurations of course differ substantially from the actual matters of structural fact from which they

22 Matrix boms for instance are used to compute requirements for components that are common elements of several
similar products or product families; the underlying configuration represented by these contains only those elements
with two or more “parents”—so called “multiple where-used” and “make multiple from” elements. The apics dictio-
nary [2] contains definitions and brief descriptions of these and other similar structures 
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are abstracted. As we are primarily concerned with divergences among the actual structural facts
themselves—major factors in cost, lead time, and error rate attributes of product realization and
representation processes—derivative configurations and their attendant representations are only of
peripheral of interest to us here. 

3.1.1.2 Representative Structure Divergences

As we stated above, every particular product system will necessarily instantiate several genitive
structural configurations, specifically including a nominal, sustainment, and constructive configu-
ration. And, each of these configurations will inevitably differ from the others and so, accordingly,
will the e-bom, m-bom, and l-bom respectively representing them. In light of the above characteriza-
tions, neither the fact these configurations differ nor the fact a particular system necessarily exem-
plifies them all should come as much of a surprise. Each of these configurations is a synthesis of a
specific processual architecture and set of requirements—all of which must be satisfied by a given
product if it is to attain the requisite degrees of performance, effectiveness, reliability, and validity.

Divergences between two distinct genitive configurations of a particular complex product sys-
tem—for instance its nominal and constructive configurations—exhibit definite patterns, although
the individual intricacy and scale of each individual configuration can make it difficult to discern
them. Internal variability, contingency, and changes to an individual configuration over time can
also obscure divergences between that configuration and its counterparts. But while the multi-fac-
eted phenomenon of conditionality is a hallmark characteristic of complex technical product sys-
tems, especially within nominal and effective configurations, it is neither the genesis of nor a basis
for explicating divergence between pairs of these configurations.23 

Pair-wise divergences between genitive configurations are positional optimization contrasts—they are
products of deliberate efforts to optimize the relationships that artifacts stand in to the processes that
define, create, sustain, use, and terminate them, governed by formal distinctions between these
relations themselves. Thus the inter-configuration divergences of interest to us here are not only
inevitable: they are, in fact, signatures of design expertise.

❙ Articulation

An atomic element in one product structure configuration can frequently be a complex or compos-
ite element in another. We call this form of divergence articulation, and it is a common cause of dif-
ferences between boms. For instance, the left and right wing spars of the f- are syntheses of
certain aerodynamic load-bearing and rigidity requirements, are consequently defined as atomic
parts in the nominal air vehicle configuration, and are therefore represented as such by the f-
e-bom. 

However, each of these spars are actually constructed by first machining and then welding several
component parts together. That is, it is economically unfeasible to procure the required size of alu-
minum bar that is also free of internal voids. Moreover, it is a practical impossibility to install sin-
gle-piece spars during assembly, as there simply isn’t enough maneuvering room; the spars must be
created by welding several previously machined parts together after these are installed ‘in rig.’ Thus
each spar in the constructive air vehicle configuration is an assembly rather than an atomic part, and it
is accordingly represented as a subassembly on the f- m-bom. 

23 Except in the most trivial senses. Conditionality within the configurations of given product system type, such as c-130,
is one genesis of divergence between all of those configurations collectively and the configurations of the concrete
instances of that type—i.e., an individual c-130. For example, there is certainly nothing variable or contingent about
the forward and aft extensions (‘plugs’) in the fuselage of a particular c-130 belonging to the British Royal Air Force,
nor about their absence in one equipped for short takeoffs belonging to the U.N., and naturally, their respective “as-
built” and “as-maintained” configurations will differ substantially. However, differences such as these are traceable to
conditionalities in effective, nominal, sustainment, and constructive configurations known as model effectivities. These
define elements that are operant (“effective”) within the scope of a specific variant of those configurations, but
which are inoperant (“not effective”) outside that scope. Hence any two particular instances of these models will of
course be structurally distinct. A major genesis of differences between a particular c-130h built in 1985 and a new c-
130j is versioning—another variant of conditionality—and these are traceable to version effectivities within the config-
urations of given product system type. 
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Articulating an element in one configuration into several elements in another can be done in sev-
eral ways and for a variety of reasons beyond those of economic efficiency and assembly con-
straints in realization process contexts. That is, articulation divergences are not limited to nominal/
constructive configuration pairs and hence are not limited to e-bom/m-bom pairs. Sound instances
of articulation in product structure definition contexts always constitute solutions to specific engi-
neering, materials, manufacturing, or logistical problems. They cannot be dismissed as bad practice
or mere artifacts of representational convenience or eliminated by policy. Inter-configuration ele-
ment articulations are necessitated by empirical matters of fact or by constraints deriving from one
or more requirements. 

❙ Factoring

Two or more separate and diverse elements in a given product structure configuration can fre-
quently be multiplexed realizations of a single element in another. We call this form of divergence
factoring, and it is another common cause of differences between boms. 

Some parts of complex artifacts inevitably have one or more complex and difficult to produce
features, such as 5-axis surfaces, long holes with small diameters and tight perpendicularity toler-
ances, and helical gear teeth, to name a few. Manufacturing engineers commonly factor these into
what are sometimes called phantom parts—the motive being efficiency and uniformity. These are
gained by producing the feature once on the phantom part, subsequently splitting or dividing the
phantom to derive the desired end products. The geometric forms of these kinds of phantom parts
are determined almost entirely by the geometry of the feature to be produced, and their spatial
extents are determined by the types and number of actual parts the phantom is designed to yield. 

For example, helical gears in transmissions are syntheses of mechanical power propagation
requirements, are consequently defined as individual atomic parts in a nominal transmission con-
figuration, and are therefore represented as such by the relevant e-bom. However, in the event such
gears might share the same tooth geometry and raw material, any competent manufacturing engi-
neer would factor these into a single blank, thereby enabling several similar gears in the nominal
configuration to be produced from one part in the constructive configuration—that is, by hobbing
the blank and then parting off the desired gears, Thus the separate individual gears would be ele-
ments in both the transmission e-bom and m-bom. However, the m-bom would differ from the e-bom,
in that it would contain the gear blank as an element, while the e-bom would not. 

Like articulation, factoring separate and individual elements in one configuration into derivatives
of a single progenitor in another configuration can be accomplished in a variety of ways. And, like
those originating from articulations, divergences due to factoring can exist between any pair of
configurations, and consequently between any pair of boms. Nor should these differences be deni-
grated. Quite the contrary: factoring is a powerful efficiency and effectiveness enhancement tech-
nique—multiplexing is a signature technique of expert design. 

❙ Consolidation

Two or more separate and diverse elements in a given product structure configuration can be a sin-
gle unified element in another. We call this form of divergence consolidation, and it is a third cause of
differences between boms. For example, each of the individual elements constituting the f- avion-
ics subsystem are syntheses of various f light control and vehicle management requirements, are
consequently defined as subassemblies and atomic parts in the nominal and constructive air vehicle
configurations, and are therefore represented as such by the f- e-bom and m-bom. 

However, many of these elements are actually deployed, inventoried, and replaced as integral
units (“Line Replaceable Units” or lrus) rather than as subassemblies of individually accessible
components. Electronic subsystem elements such as motherboards or sealed electro-optical inertial
guidance packages are paradigm examples of lrus. In some cases lrus are designed to be disposed
of when any of their elements fail or preventative maintenance schedules call for their periodic
replacement; in others they are designed so they can be disassembled, repaired and refurbished,
reassembled, and subsequently put back into spares inventories. 

Consolidating elements in one configuration into a single integral element in another can be
effected in several ways. That is, consolidation divergences are not limited to nominal/sustainment
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configuration pairs and hence are not limited to e-bom/l-bom pairs. Sound instances of consolida-
tion in product structure definition contexts always constitute solutions to specific reliability, sup-
portability, maintainability, and logistic availability requirements. And just like articulations, they
cannot be ignored or eliminated by policy; inter-configuration element consolidations are man-
dated by empirical matters of fact or by constraints deriving from one or more requirements. 

3.1.2 Amplitude

The structure multiplicity need just described is actually the specific mereological24 variant of a more
general need which we call representational amplitude or scope. In other words, the capability to
explicitly represent multiple coincident and divergent genitive configurations of a given product
system is one variation among several constituting a major class of amplitude needs, and many of the
shortcomings of existing product representation systems are symptomatic of deficiencies in this
and other variants of representational scope. We presented mereological amplitude (“structure mul-
tiplicity”) as a need distinct from and prior to the other variants because of its direct relationship to
the multiple bom problem. Descriptions of the others, no less crucial despite their indirect relation-
ships to that particular problem, follow our remaining introductory remarks. 

All representations, including boms, are artifacts—they are products of processes and instrumentalities
for executing them. In these two specific ways they are indistinguishable from all other types of
artifacts, and like all the others, representations are created, used, and sustained in order to address
certain specific needs. Despite this positional equivalence however, representations as a class differ
from other classes of artifacts in one crucial respect—they designate, describe, or depict—in some
way or another, they objectify. That is, representations are instrumentalities of presentation, and it is
this inherently revelatory characteristic that distinguishes representations from any other type of
artifact. The same point conversely expressed is that representations exist to address a unique class
of informatic needs, and the attributes constituting sufficiency conditions for satisfaction of those
specific sorts of needs—i.e., representational performance and effectiveness criteria—are also corre-
spondingly unique. 

Three signature characteristics of complex technical products and their life cycles are complexity,
variation, and novelty. Each of these exemplifies many different forms. For example, external or
extrinsic complexity is scale. Internal or intrinsic complexity is intricacy. Processual or ontogenetic
complexity is extended interdependence. Extrinsic variation is heterogeneity. Intrinsic variation is contin-
gency. Processual variation is change. Extrinsic novelty is instatement or rescission. Intrinsic novelty is
consolidation, factorization, or separation. Processual novelty is innovation. Thus extreme multi-
dimensional diversity over comparatively long life cycles is a hallmark characteristic of complex
product systems. Commensurate representational amplitude—the capability to coherently encompass
the full spectrum of these diversities across entire product life cycles—is a principal and as yet
unfulfilled product representation need that includes, but is not limited to, the mereological
‘dimension’ of amplitude previously described. 

Scope of diversity is delimitative, not quantitative; it is a classificatory magnitude rather than a
numeric one. Determining the sufficiency conditions for satisfaction of this need is consequently a
taxonomic rather than a mathematical task. That is, stipulating that this need consists representations
of 42 types of entities is meaningless; one must identify which types constitute the requisite repre-
sentational scope—although one may of course count them after they have been identified if one
wishes to. Note that in the interest of brevity the listing that follows consists in taxonomically
related groups of types delimiting the requisite dimensions of amplitude, instead of particular types
constituting those groups, or ‘locations’ on these dimensions.

❙ Ontogenetic Amplitude —Representation of Processes and Other Occurrents

All product systems are both directly and indirectly correlated with processes in a myriad of spe-
cific ways. For example, most products instrumentalize (i.e., materially enable) the execution of
processes; some directly execute them. The f- and the interception process is an example of the
former; a database management system and data storage and retrieval processes is an example of the

24 Centered on relations of part and whole—i.e., configuration or structure in the assembly/component relation sense. 
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latter. All artifacts are outputs of intentionally directed realization processes; many are inputs to
these as well. Particular configurations of a product are keyed to specific application processes or
realization process phases as we previously described in some detail. Finally, particular versions of
product configurations are correlated with changes in application or realization processes. Applica-
tion process changes are consequents of changes in instrumental needs or requirements resulting
from shifts in user purposes. Realization process changes are made to correct f laws, mitigate defi-
ciencies, exploit new technologies, and typically result in enhanced product performance and
effectiveness. 

Moreover, many ‘products’ of so-called service enterprises or service organizations within enter-
prises are processes, not products in the sense we have been using that term here. The formally quali-
fied analysis, production, and assurance processes used by aerospace and defense enterprises and
their commercial peers to create, validate, and support their products are examples of these, as are
most of the ‘products’ of medical, financial, and governmental institutions.25 All such processes are
themselves artifacts, designed, developed and sustained via sophisticated realization processes like
any other artifact; they also encompass effective, nominal, constructive, and sustainment configu-
rations, and they are frequently comparable in complexity, variation, and novelty to the most com-
plicated technical product systems. 

The fundamental distinction between enduring objects that exemplify persistent qualities on the
one hand and intrinsically dynamic entities such as processes and events on the other is utterly
entrenched in our everyday conception of the world. Commonly called the continuant/occurrent dis-
tinction in philosophical circles, it is ref lected in the grammatical forms of all of our natural lan-
guages by the distinction between noun and verb, and it is instantiated in various forms by almost
all of the formal languages and systems we use to model the world and our representations of it.
Furthermore, almost all of our languages and formal systems also exemplify a pervasive although
implicit bias towards continuants, and nowhere is this more evident than in existing product repre-
sentation systems, which without exception utterly fail to explicitly represent occurrents at all—let
alone represent their structures—except in trivial textual form. Continuants are ‘objects;’ thus they
are easily objectified for these purposes. However, occurrents are not ‘objects;’ one simply doesn’t
put one’s hands on processes, nor easily determine their characteristics, except obliquely in terms
of their outputs. Accordingly it takes a certain turn of mind to seriously undertake to explicitly repre-
sent them as entities on par with continuants, instead of implicitly and indirectly representing them
via continuant surrogates—for example, as lines of text in documents. 

The crucial need for representational parity across both sides of the continuant/occurrent divide
should be clear, given the numerous and multi-faceted relationships between them. The imperative
need for ‘product’ representation systems to explicitly represent occurrents directly should be
equally clear, in light of their status as artifacts or ‘products’ themselves. 

❙ Nomological Amplitude —Representation of Needs, Requirements, and Metrics

All artifacts are created to instrumentalize the accomplishment of certain purposes. Purposes are
possible states that one or more agencies desire to be actual; thus accomplishment is actualization—
an outcome of effective actions or processes. “Effective” means that the result state is satisfactorily con-
gruent to the desired state. “Satisfactorily congruent” means that some requisite degree or measure of
effectiveness has been defined as a criterion of success. 

Conditions that impede or block the execution of effective actions or processes are called needs—
capability voids with respect to actualizations of desiderative states. Instrumental or intrinsic needs
are capability voids respecting mechanisms of actions or processes—they are exigencies of artifacts.
Thus satisfaction of these needs is instrumentalization—an outcome of effective artifact (‘product’) real-
ization. “Effective” in this context means that the resulting artifact is suitably functional for the action
or process. “Suitably functional” means that one or more measures of performance have been defined
as criteria for fitness of application or use, and artifacts instantiating these are called solutions. 

25 More precisely, the ‘products’ are process performances, not the processes themselves. Nevertheless, the point that
[performances of] processes are not products in the sense we have been using that term is valid with or without the
additional precision. 
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Accomplishing the kinds of purposes relevant to our discussion here always necessitates success-
ful execution of complex operations comprising many distinct integrated processes; they cannot be
immediately and directly achieved by atomic actions. That is, actualizations of these kinds of desid-
erative states invariably depend upon coordinated actualizations of antecedent states. The effective-
ness of such operations is, therefore, an essentially distributive feature of the effectiveness
characteristics of their constituent processes and actions. Consequently, achieving satisfactory con-
gruences between the final states actualized by these operations and the desiderative states their
correlated purposes stipulate mandates subdivision of their measures of effectiveness and subse-
quent assignment to their constituent processes and actions. This subdivision and assignment is
called allocation. 

Conditions that impede or block the execution of actions or processes constituting complex
operations are called requirements—capability voids pertaining to actualizations of antecedent states of
desiderative states. Instrumental requirements are capability voids respecting constituent actions or
processes of complex operations—they are entailments of instrumental needs or other instrumental
requirements and thus are exigencies of artifact elements. Fulfillment of requirements is synthesis—an
outcome of effective artifact decomposition, element realization, and integration. The performance char-
acteristics of such artifacts are, therefore, functionally dependent upon the performance character-
istics and integrity of their elements and are aggregates of these. Consequently, achieving requisite
levels of instrumental performance necessitates systematic allocations of those measures to artifact
elements. 

Needs, requirements, operational measures of effectiveness, functional performance measures,
and the multi-dimensional networks of dependence, allocation, and containment relationships
among these collectively constitute functional and realization architectures of product or process sys-
tems. These architectures are the ultimate determinants of all structural configurations and systemic
characteristics. They are the rationale for why artifacts are they way they are; they are the ultimate
analytic factors to which all synthetic facts are traceable; they are their genesis and their final rea-
sons. Nevertheless, existing product representation systems completely fail to represent them, as
these architectures and their elements are altogether beyond their representational capabilities.
And, nothing demonstrates the gravity of this unfulfilled representational need more effectively
than the pervasive and persistent problems with the engineering change process—especially its
impact analysis and propagation subprocesses. 
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3.2 Product Representation Requirements

We have divided the requirements antecedent to the product representation needs outlined in para-
graph 3.1 into three distinct groups—metastructures, functional capabilities, and superordinate enterprise
operating system requirements. The first two groups are presented below in paragraphs 3.2.1 through
3.2.6; the latter are partially sketched in Section 4, Results Part II. 

We limited our analysis to those requirements which are critical, formal, and immediately ante-
cedent to the identified needs, thereby excluding several classes of operational requirements from
our analysis. Specifically, we did not derive or develop characterizations of performance, utiliza-
tion, and life-cycle “illity” requirements that would naturally follow from an empirical analysis,
focused on specifying sufficiency conditions for synthesis and implementation. Again, our aim was
to fill a requirements definition void by identifying core formal requirements for all possible solutions
to these particular product representation needs, independently of any requisite technical, eco-
nomic, or strategic considerations. Nevertheless, a complete and effective product representation
solution will have to satisfy all requirements deriving from these and other related needs, not just
those presented here.26 However, any viable information system element of such a solution will
necessarily satisfy the first two groups of requirements, and any total solution will necessarily sat-
isfy all three. 

3.2.1 Metastructure

The 17 specific relation types depicted in Table 1 below collectively constitute the necessary infor-
matic metastructures required to satisfy the product representation needs previously outlined in
paragraph 3.1. That is, any information system solution to those needs must explicitly implement
representations of these 17 structures and provide facilities for creating, modifying and querying
instances of them.

The metastructures are divided into two distinct groups. Core metastructures comprise the essen-
tial elements required to represent the basic mereological structure and morphology of any entity at
all. Adjunct metastructures encompass three subsidiary groups. Intrinsic adjuncts constitute those
required to explicitly represent systematic variability among the members of a given entity type.
Extrinsic adjunct metastructures constitute those required to explicitly represent relations between
elements of one structural configuration and its counterparts in others, and intertypic adjuncts con-
stitute those required to explicitly represent relationships between the taxonomically distinct
entity types in a complete product representation. 

We do not address schematic or metaschematic product representation content requirements
over and above those pertaining to the specific structures in Table 1. That is, we are not concerned
with, nor do we specify, any entity types or attributes of entity types excepting those which are
directly entailed by the definitions of the above relation types. This is not to say that such charac-
teristics are unimportant to a product representation system: they are very important indeed. How-
ever, our focus here is on previously unidentified or incompletely articulated requirements deriving
from the needs identified above, not on recapitulating those which have already been identified by
others.27 

26 Product representation visibility requirements deriving from certain stakeholder-specific needs are an illustrative exam-
ple. Customers and Suppliers (and in some cases, certain regulatory agencies), need access to product representations,
albeit for different purposes. Many so-called ‘customer relationship management’ and ‘supply chain integration’ prob-
lems are symptomatic of the narrow focus and limited capabilities of existing product data management systems to sat-
isfy these requirements, especially those which are unique to complex manufacturing environments such as aerospace
and defense. Both end-user visualization and programmatic access requirements also fall under this group; they are
actually agency type-specific product representation visibility requirements as well. These were deliberately excluded
from our analysis, as they are neither formal nor directly antecedent of the identified needs. Nevertheless, they do
constitute a necessary set of satisfaction conditions for a complete and effective product representation solution. 

27 For example, a massive amount of work to define the entity type product definition, its attributes, variants, and a
host of related entity types, has already been produced by efforts such as step, as we mentioned before. Another
example is the entity type document, a critical relatum of several relation types we define here. The sgml DocBook
dtd (Document Type Definition) [23], is a monumental representation of a ‘tech pub’ variant of that entity type. Our
objective is to fill a requirements definition void, not to restate the results of these and many other similar efforts. 
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Our descriptions of requirements for the core metastructures is extremely detailed and is pre-
sented in paragraph 3.2.2. Our presentation of requirements for the adjunct metastructures summa-
rizes their formal definitions as those stood at the end of the mereos program. To support our post-
mereos program enterprise engineering activities, we have subsequently launched an effort under
our own auspices to develop new and much more comprehensive characterizations of the adjunct
metastructures. We will make the new requirements specifications publicly available when this
effort is completed. 

Finally, we should stress that our focus is on requirements, not implementation issues such as the
choice of one database management system, geometric modeling system, or programming language
over another. While some of these may be better suited than others to implementing the formal
requirements we define here, our purpose is to articulate what these requirements are, not how they
might be effectively synthesized into an implementation. In a word, our objective is to define the
formal structures required to address the previously presented informatic needs.

Table 1. Product Representation Metastructure Relation Types
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3.2.1.1 SOA Syntax and Notational Conventions

The metastructures in the above table could be rendered in a variety of ways for our formal descrip-
tive purposes. We have chosen to present them using state-of-affairs (soa) syntax and semantics, as
these are satisfactory for the task at hand, and the notation is easily assimilated, interpreted and
implementationally neutral. 

There are two variants of soa—plural and monadic. A plural soa is a structure of the form:

<R,<x1,…,xn>> 

where R designates a relation type, <x1,…,xn> designates a member of relation type R, and xi designates
some entity standing in the ith place of relation R. A monadic soa is a structure of the form:

<f,<x>>

where f designates a property type, and x designates some entity instantiating that property.28 Exam-
ples of the plural and monadic variants are:

<Loves,<John,Mary>> or <Intelligent,<Mary>>;

<+,< 2,2,4>> or <Prime,<3>>; and,

<Composition,<F-225005,Enginepw042>>.

Note we use the generic term extant to designate either the n-tuple or 1-tuple in soas; thus
<F-225005,Enginepw042> in the soa <Composition,<F-225005,Enginepw042>> or <Mary> in the soa <Intelligent,<Mary>>
are called the “extants” of those soas. Two or more soas whose extants encompass at least one ele-
ment in common are called co-incident; those whose extants encompass exactly the same elements
are called co-extensive. 

❙ Soa Schemes

Since we are using soas to describe product representation metastructures, definitions will be ren-
dered in terms of soa schemes rather than soa instances, the latter being used only as examples. An
soa scheme is a structure of the form:

<R,<ATTRIBUTE1,…,ATTRIBUTEn >> or <f,<EXEMPLAR>>

where again R designates a relation type and ATTRIBUTEi designates an entity type whose instances stand
in the ith place of relation R; or where and f designates a property type, and EXEMPLAR designates some
entity type whose instances instantiate that property. An example of such a scheme for the composi-
tion relation is:

<Composition,<Complex,Element>>.

Soa schemes as we will be rendering them are really syntactical shortcuts for a much more com-
plex form of soa whose relation is delimitation, and whose extension comprises types necessary to
define a class of soas, such as the relation type, its attributes, relevant qualification/quantification
conditions, possible variants, and context element types. Where applicable these other elements
are defined textually rather than in soa syntax.29 

We will use the generic term extension to designate the schematic counterpart of an soa extant;
thus <Complex,Element> in the scheme <Composition,<Complex,Element>> or <IntentionalBeing> in the scheme
<Intelligent,<Intentional Being>> are called the “extensions” of those soa schemes. Again, this is really a
notational shortcut for { <xi,…,xj>1,…,<xk,…,xw>n } or { <x>,…,<y>,…,<z> } —that is, the set of all n-tuples or
set of all 1-tuples constituting the extensions of a given type R or f. Two or more soa schemes
whose extensions encompass at least one entity type (attribute or exemplar) in common are called
congruent; those whose extants encompass exactly the same types are called conspecific. 

28 In lisp speak an soa is a list; in relational database speak an soa extant <x1,…,xn> is called a row or tuple; etc. 
29 There are really two reasons why we have employed this delimitation shorthand. First of all, it is much less distract-

ing than a complete presentation would be. Secondly, it is adequate for conveying the essential product representa-
tion requirements we are concerned with presenting here. A complete delimitation is a very complex structure
indeed—the drawing entitled Architecture Element Elements in Figure 30 in Attachment 2 depicts this structure. 
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❙ Adicity, Order, Ref lection, and Self-Application

The extensions of soas and soa schemes can be ‘nested’ in two fundamental and two derivative
ways. First, an element of the extant of a plural soa can itself be a polyadic plurality or n-tuple:

<Loves,<Mary,<Frank,Joe,Bill,John,Bob>>> 

Second, an element of the extant of either plural or monadic soas can itself be an soa:

<Designation,<“John’s Favorite SOA”,<Loves,<John,Mary>>>> or 

<True,<<+,< 2,2,4>>>>

In the above examples the Designation and True soas are 2nd-order; the Loves and + soas 1st-order. 
There is a specific variant of higher-order soas called ref lection. A ref lective soa is a 2nd-order or

above soa that contains an instance of the same soa scheme as an element in its extant. For example

<Designation,<“John’s Favorite Designation SOA”,<Designation,<“John’s Favorite SOA”,<Loves,<John,Mary>>>>>>

is ref lective in that the object of the nominal designator in the top-level Designation soa is itself a
Designation soa. Finally, there is a variant of ref lection called self-application. A self-applicative soa is a
ref lective soa that contains itself as an element in its extant. 

Any of these forms of nesting can potentially occur in a single soa extant, subject to schematic
and empirical constraints. 

❙ Soa Rank

Instances of soa schemes are classified in three fundamental ways. The first is by their relations. The
second is by their order as defined in the prior paragraph. The third is the metasystematic ranks of the
entities in their extants. The two ranks relevant to our purposes here are taxon and individual.30

Consider the following two examples:

<Composition,<F-225005,Enginepw042>>  and <Composition,<F-22,Engine>>. 

The elements constituting the extant of the first Composition instance above clearly designate a
particular individual f- and engine, respectively, while those of the second do not—they desig-
nate the f- and engine product types, or taxa. Thus the rank of the first soa is individual, and the
rank of the second is taxon. 

The majority of soa instances of rank taxon represent elements in the delimitations of the entity
types (i.e., attributes) in their extants, such as f-, allocation (the process) or requirement specifi-
cation (the document type). For example, the Composition instance of taxon rank above is defining a
mereological containment relation between members of the product taxon f- and members of
the engine taxon. Soas such as these are the formal analogs of structures implemented by e-boms,
m-boms, and l-boms, which represent the structures of product types as opposed to those of particu-
lar individual products. Again, these soas are syntactical shortcuts for <Delimitation,<…>> soas—in these
cases they are elements of delimitations of entity rather than relation taxa. 

Soa instances of rank individual represent elements of particular members of entity types. For
example, the Composition instance of individual rank above is defining a mereological containment
relation between f- tail #5005 and Pratt & Whitney engine serial #042. These are the formal ana-
logs of structures implemented by serialized “as-built” and “as-maintained” boms, which represent
particular structures of particular instances of product types. 

In some cases elements in the extants of soas can differ in metasystematic rank, making ascrip-
tion of it to the containing soa less obvious than cases where the rank of all extant elements are the
same. For example, the ranks of 

<Designation,<“5005”,theFirstFlightF-22>> and <Designation,<LMF-22Designator,F-22>>

30 There are four metasystematic ranks or categories in our own formal system: category, taxon, individual, and fact.
Thus in principle the relata in any soa instance or scheme could be of any one of these four ranks. However in practice
this categorial scope is not necessary for multiple bom reconciliation. We have not, accordingly, imposed it as a prod-
uct representation requirement here. 
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are clearly individual and taxon, respectively; while the rank of

<Designation,<“Raptor”,F-22>>

is not obvious, as “Raptor” is a particular designator, but F-22 is clearly a product taxon, not a partic-
ular airplane. We will address the question of rank of such ‘mixed rank’ soas on a case-by-case basis
where it is important to specifying requirements. 

❙ Modal Soas and Contexts

Any 2nd-order or above soa modifies or modalizes the soa or soas in its instance, and the plurality of
modal soas immediately containing a given soa as elements in their extants collectively constitute
the context of that soa. Rendering this as an explicit soa itself, a context is a structure of the form

<Context,<ObjectSOA,<ModalSOA1,…,ModalSOAn >>

where Context is a special form, where ObjectSOA is the target soa modalized by one or more nth-order
soas, and where ModalSOAi is an soa containing ObjectSOA as an element of its extant. An explicitly
contextualized soa is rendered using the form:

<[ ],<R,<x1,…,xn >>> 
|
÷<Rw,<x1,…,SOAx,…xn >>
÷<fa,<SOAx>>

where [ ] designates the context of the target soa, <Rw,<x1,…SOAx,…xn>> and <fa,<SOAx>> designate the
[n+1]th-order modalizing soas, and where SOAx designates the nth-order soa. 

We will use the term intension to designate the schematic counterpart of an soa context. 

❙ Complementarity

By default all soas are positive; that is, they represent affirmations of facts. Thus the soa 

<Composition,<F-225005,Enginepw042>>

represents a containment relation between a particular f- and a particular Pratt & Whitney
engine, asserting that engine serial number PW042 is, in fact, a component element of f- tail num-
ber 5005. 

However, it is sometimes necessary to explicitly represent a negative fact—that is, a fact of opposition.
The special modal form called complementarity—the modality of polarity—together with its two
variants thetic (positive), denoted by the symbol 0î, and kenonic (negative), denoted by the symbol
0û, is employed for this purpose. Thus the explicitly designated kenonic soa 

<[ ],<Composition,<F-225005,Enginepw042>>>
|
÷<0û,<SOAw,>>
÷<…

represents the fact that engine serial number PW042 is not a component element of f- tail number
5005.

Note that kenonic and uniformly rank individual soas represent particular negations, and that
kenonic and uniformly rank taxon soas represent specific delimitative exclusions. 

❙ Identities

As we mentioned in our introductory remarks, the informatic metastructures required to satisfy the
product representation needs we are concerned with here are all relations between entities, and we
are accordingly only concerned with defining requirements pertaining to those and their immedi-
ately entailed content requirements. Some of these involve related entity types and their attributes,
and not all entities are relations or properties. For example, neither the product type f- nor the
instance of that type f- tail #5005 are relations between entities or properties of them. While we
are not concerned with enumerating the characteristics of the f- or indeed product itself, we will
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on occasion need to specify requirements for entities which are not relations or properties. Such
entities are rendered by instances of the identity soa scheme:

<[ ],<Identity,<>>> 
|
÷<Designation,<“x”,theIdentitySOA>>
÷<Rm,<f,…,theIdentitySOA,…g>>
÷<fa,<theIdentitySOA>>
÷<Rw,<s,…,theIdentitySOA,…q>>
÷ etc.

where Identity is an extensionless special form. Note that soas containing x as elements in their
extants actually contain the soa theIdentitySOA—that is, “x” in our standard soa notation is really a syn-
tactical shortcut for an identity soa instance, modalized by a designation soa with “x” as its desig-
nator.31 

❙ Particulars

The identity special form encompasses four specific variants, called “particulars,” derived by vary-
ing complementarity, metasystematic rank, and adicity.

1. Bare particular – the thetic (0î) rank individual variant of identity. Instances
of this variant represent pure extensionless facts of positive
individuality, connoted by the terms “this” or “these.” 

2. Arbitrary particular – the thetic (0î) rank taxon variant of identity. Instances of this
variant represent pure extensionless facts of positive taxicity,
connoted by the terms “anything” or “any things.” 

3. Null particular – the kenonic (0û) rank individual variant of identity. Instances
of this variant represent pure extensionless facts of negation,
connoted by the terms “nothing” or “no things.”

4. Indeterminate particular – the kenonic (0û) rank taxon variant of identity. Instances of
this variant represent pure extensionless facts of exclusion,
connoted by the terms “something” or “some things.”

❙ Indexicals

It is sometimes necessary for an element in the extant of one soa to explicitly address or ‘point at’
or ‘virtually contain’ one or more elements of another soa, in situ. The indexicalization special form32

is used to accomplish this, and it is a structure of the general form:

SourceSoax: <[ ],<R, <x1,…,<Indexicalization,<TargetSOA,ReferentCoordinate>>,…,xn >>>

where SourceSoax designates the soa containing the indexical element, TargetSoa designates the soa
whose element is being situationally referred to as an extant element in SourceSoax, and where Refer-
entCoordinate designates a target soa-specific coordinate, and sometimes an soa instance extant-spe-
cific configuration coordinate. This coordinate either designates the ordinal position of the
referent element in the target soa instance, or is a unique or uniquely resolvable nominal designa-
tion of that element in that position. Note that all indexicals are necessarily embedded; that is, they
are necessarily extant elements of other soas. They are at least 2nd-order, thus they are also context
elements of their target soas. 

31 From this we can state a refinement to our prior definitions of 1st-order and 2nd-order soas. A 1st-order soa is one
whose extant elements consist solely of identity soas or “terminal values;” nominal designators being examples of
these. A 2nd-order or above soa is one containing at least one 1st-order or above soa as an extant element. 

32 Strictly speaking indexicalization is a variant of the designation relation type defined in paragraph 3.2.5.4. We have
defined it here as it will be used extensively prior to that paragraph. 
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❙ Graphics

Representation system metastructures are instrinsically abstract, intricately inter-related, and corre-
spondingly difficult to communicate. Over the course of the mereos program, we developed a series
of graphics to assist in developing our conceptualizations of these structures. Although there is no
substitute for unambiguous syntax and illustrative examples, we have found these visualizations
helpful and thus have incorporated them into the definitions presented here.33

33 A complete and much larger version of Figure 3 above is included in Figure 33 in Attachment 2. 

Figure 3.  Metastructures in Graphical Form
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❙ Symbology

For the sake of typographical brevity we will, on occasion, use certain symbols in conjunction with
our soa notation, as follows:

:= assignment - attribute type delimitation or attribute instance entity identification

= identity - logical equivalence; also equivalence relation as defined in 3.2.3.1 below

≠≠ difference - logical inequivalence

- negation - logical not

^ conjunction - logical and

§ disjunction - logical or

fl exclusion - logical xor

Pî possible - an actual inoperative fact

Pô impossible - an unactual inoperative fact

Cî contingent - a conditionally operant fact

Nî necessary - a fact nomologously related to the operance of one or more facts

Nô extrinsic - a fact nomologously unrelated to the operance of one or more facts

0î thetic - a positive fact

0û kenonic - a negative fact

* bare fact - positive identity soa of rank individual

• arbitrary fact - positive identity soa of rank taxon

! null fact - negative identity soa of rank individual

¡ indeterminate - negative identity soa of rank taxon

[ ] optionality - soa extension configuration or element variation34

fi indexicalization-as defined on page 31 above

7ï composition -the relation defined in 3.2.2.1 below

3ï constitution -the relation defined in 3.2.2.2 below

2î inherence -the relation defined in 3.2.2.3 below

QÜ antecedence -variant of the qualification relation defined in 3.2.2.4 below

QÖ consequence -variant of the qualification relation defined in 3.2.2.4 below

# quantification-the relation defined in 3.2.2.5 below

I involvement -the relation defined in 3.2.5.1 below

Uppercase letters (A,B,C,…Z) will unless otherwise indicated be used as variables designating entities
of metasystematic rank taxon. Lowercase letters (a,b,c,…,z) will unless otherwise indicated be used
as variables designating entities of metasystematic rank individual. 

34 Square brackets within soa extension definitions— <<<<Rx,<Attribute1,[ Attribute2 := Variant p fl Variant q ],…>> —are used to indi-
cate variability among extants of instances of a relation type and to define the variations; that is, to mark the fact that
extensional variants or ‘subtypes’ of that relation type exist. Hence the expression [ Attribute2 := Attributep fl Attribute q ]
designates the fact that relation type Rx comprises two extensional subtypes, as entities standing in the Attribute2 posi-
tion can be instances of Variantp XOR instances of Variantq. The order relation type defined in 3.2.3.4 below, which
encompasses four distinct extensional variants, is an illustrative example. 
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3.2.1.2 Schematic Metastructure Requirements

Several requirements pertaining to particular metastructures are actually metatype-specific config-
urations of more general requirements that apply to some or all of the metastructures, albeit in dif-
ferent ways and to differing degrees. Schematic characterizations of these requirements are
presented here. 

❙ Polymorphism 

Unless otherwise specified, any instance of any metastructure type can contain an instance of any
other metatype as an extant element. This is called contingent polymorphism. Delimitations of some
metastructure types or their variants entail that their instances necessarily contain instances of
other metatypes. This is called necessary polymorphism. 

Instances of any of the 17 metatypes whose extants contain an indexicalization element are
examples satisfying the contingent polymorphism requirement scheme. The qualification and
quantification metatypes (defined in paragraphs 3.2.2.4 and 3.2.2.5) are examples of metatypes sat-
isfying the necessary polymorphism requirement scheme. 

❙ Ref lection

Unless otherwise specified, any instance of any metastructure type can contain an instance of that
same metatype as an extant element. This is called contingent ref lection, and its realization in terms of
soa structures was presented on page 29 above. Delimitations of some metastructure types or their
variants entail that their instances necessarily contain instances of the same metatypes. This is
called necessary ref lection. 

The non-terminal variants of the order metatype (defined in paragraph 3.2.3.4) are examples of
metatypes satisfying the necessary ref lection requirement scheme.

❙ Self-Application

An instance of a metastructure type may contain itself as an element of its extant if and only if explic-
itly specified. This is called self-application. Its realization in terms of soa structures was also pre-
sented on page 29 above. 

❙ Supplementarity

The instances of some metastructure types or variants are existentially exiguous. That is, the exist-
ence of a single particular instance of these types necessarily entails the existence of at least one
other co-incident instance of that same type. This is called extensive supplementarity. A stronger variant
of this necessarily entails the existence of at least one other co-incident but detached instance of that
same type. This is called disjoint supplementarity. 

Consider some metatype R and an instance of it <R,<x,y>>. If R is extensively supplementational,
then necessarily there exists at least one other instance:

<R,<x,z>> § <R,<z,x>>. 

If R is disjointly supplementational, and an instance of it <R,<x,y>> exists, then necessarily there exists
at least one other instance:

<R,<x,z>>: such that - <R,<y,z>> and - <R,<z,y>> § <R,<z,x>>: such that - <R,<y,z>> and - <R,<z,y>>.35

Rank taxon instances of the composition metatype are examples satisfying the extensive supple-
mentarity requirement scheme. Rank individual instances of this metatype are examples satisfying
the disjoint supplementarity requirement scheme. 

The instances of some attributes delimiting extensions of some metastructure types are necessar-
ily minimally dyadic. This is called positional supplementarity. Consider some metatype R and an
attribute of its extension Q, such that <R,<A,…,Q,…,S>>. If Q is positionally supplementational, then
every instance of Q in the extant of every instance of R is necessarily at least a 2-tuple:

35 This is a generalization and informal articulation in soa syntax of the formally rendered Weak Supplementation Prin-
ciple (wsp) in Simons [20.2]. 
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<R,<xi,<q1,q2,…,qn>,sk>>

such that q1,q2,…,qn all designate distinct entities. The substituend attribute of the equivalence
metatype (defined in paragraph 3.2.3.1) is one type satisfying the positional supplementarity
requirement scheme. 

❙ Rank Coordination

All elements of all metatype instances are either of taxon or individual metasystematic rank. How-
ever as described on page 29 above, in general one extant element in a given soa can be of a differ-
ent rank than another element within that soa. The extant elements of instances of most
metastructure types must be the same metasystematic rank. For 1st-order instances this is called nec-
essary rank uniformity; for types encompassing higher-order instances (polymorphic, ref lective, or
both), this is called complete rank uniformity. 

For example, consider the 2nd-order polymorphic composite structure represented by the soa
below. 

<Composition,<<Constitution,<A,B>>,<Constitution,<W,Z>>>

This soa represents a containment relation between two dependence relations, signifying that the
material dependence of W on Z—i.e, <Constitution,<W,Z>> —is a component element of the material
dependence of A on B— i.e., <Constitution,<A,B>>. Complete rank uniformity stipulates that either A, B, W,
and Z are all of rank taxon or are all of rank individual. The variation metatype (defined in para-
graph 3.2.3.3) is one example satisfying this requirement scheme. 

❙ Cyclicity

A given set of soa instances delineated by some relation R can be treated as a directed graph. One
graph-theoretic property and its converse—cyclicity and acyclicity—are invoked in some metastruc-
ture requirements, so we define them here. An apparent form of cyclicity, which is an artifact of
our use of soa schemes and rank taxon instances as delimitation shortcuts is also defined. 

Cyclicity

The extants of the members of any set of plural soas delimited by a given relation R can be rendered
as a single sequence of unique extant elements:

· <R,<x1,x2>>, <R,<x2,x3>>,…,<R,<xn-1,xn>> ‚ fi <x1,x2,x3,…,xn-1,xn>

Any such sequence is cyclic under relation R if and only if:

<R,<x1,x2>> and <R,<x2,x3>> and … and <R,<xn,x1>>. 

Acyclicity

Any such sequence is acyclic if and only if it is not cyclic under a given relation R. 

Delimitative Cyclicity

Any set of uniformly rank taxon soa instances ·<R,<T1,T2>>,<R,<T2,T3>>,…,<R,<Tn,T1>>‚ is cyclic given the
above definition. However, as we stated in our presentation of soa syntax and notational conven-
tions above, the majority of soa instances of rank taxon represent facts of delimitation rather than
facts of specific relatedness, and thus any such cycle is ambiguous. That is, it could be interpreted to
represent that a member x of taxon Ti can stand indirectly in relation R to itself—i.e., that instances
of that metatype can be cyclic. On the other hand, it could also be interpreted to represent that some
member x of taxon Ti can stand in relation R to another member y of taxon Ti, but that x cannot stand
in that relation to itself. This latter case, called delimitative cyclicity, expresses a taxonomic generalization
concerning relatedness of members of taxon Ti, in respect to relation R, 

In many cases constraints apply on members of Ti with respect to standing in some attribute posi-
tion of relation R. This is called conditional rank taxon cyclicity. In some cases there are none. This is
called unconditional rank taxon cyclicity. 
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❙ Existential Status

Unless otherwise specified, the complementarity modality of any instance of any metastructure
type can be either thetic (0î) or kenonic (0û), and via indexicalization instances, so can any extant
element of any instance. However, as noted above, all instances and extant elements are thetic
unless their complementarity modalities are explicitly designated as kenonic (0û), Thus any soa W

SOAw: <R,<x,y>> 

lacking an explicit representation of complementarity modality shall be interpreted as synonymous
with an explicitly modalized soa

<[ ],<R,<x1,…,xn >>> 
|
÷<0î,<SOAw,>>
÷<…

and any indexicalization instance designating an element in an soaw

<R,<z,<Indexicalization,<SOAw,”y”>> 

without itself having an explicit representation of complementarity modality shall be interpreted as
synonymous with an explicitly modalized indexicalization instance

<R,<z,<[ ],<Indexicalization,<SOAw,”y”>>>
|
÷<0î,<INDEXICALIZATIONSOA>>
÷<…

Any element of any instance of any metastructure type can, unless otherwise specified, be either
an arbitrary or an indeterminate particular. Thus in accordance with the definitions of these iden-
tity variants above, an soa instance of the form

<R,<x,•>>

shall be interpreted as a fact that entity x stands in relation R to any [arbitrary] entity capable of
standing in the indicated monadic attribute position, and an soa instance of the form

<R,<x,¡>>

shall be interpreted as a fact that entity x stands in relation R to some [indeterminate] entity capable
of standing in the indicated monadic attribute position, and finally that an soa instance of the form

<R,<x,<•>>> or <R,<x,<¡>>>

shall be interpreted as a fact that entity x stands in relation R either to any or some entities collec-
tively capable of standing in the indicated polyadic attribute position, respectively. 

An extant element of an instance of a metastructure type can be a null particular (!) if and only if
explicitly specified. 
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3.2.2 Core Metastructures

All structures of all artifacts minimally consist in five fundamental types of relations. 

1. Composition —the relation of mereological containment, depicted by purple lines in above figure; 

2. Constitution —the relation of material dependence, (brown lines, center);

3. Inherence —the relation of exemplification (orange lines, right side); 

4. Qualification —the relation of conditionality (Greek letter Q); and,

5. Quantification—the relation of multeity (not shown). 

Any minimally correspondent and capable product representation system must accordingly imple-
ment explicit representations of these five relation types and provide facilities for instantiating,
modifying, and querying them. 

Table 2. Core Relations

Figure 4.  Core Relations
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3.2.2.1 Composition

Composition relations, depicted by the purple lines in Figure 4 above, are structures of the form:

<Composition,<Complex,[Element := Element fl ! ] >>

where Composition designates the Mereological Containment taxon; Complex designates entities that
contain component elements; where Element designates entities that are component elements; and
where ! designates an instance of the null particular variant of identity.

Mereological Containment is a fundamental delimitative element of structure. Composition is,
accordingly, a critical metatype required for representing it. This relation is one of the two primary
types represented by classical boms—the other being constitution, defined in paragraph 3.2.2.2
below. Examples of composition relations are:

<7ï,<Assemblyx,Componenty >> - a typical containment relation in boms

<7ï,<Documentw,Paragraphz >> - e.g., this document and paragraph 3.3.3

<7ï,<Processq,Phaser >> - e.g., Product Realization and Product Definition

where the symbol “7ï” denotes composition as noted on page 33. 

❙ Composition Variants

There are two infraspecific variants of Containment—Integral and Distributive. Facts of the Integral
variant are relations between mereologically unified complexes and their components, such as air-
craft fuselages, microprocessor chips, polysyllabic words, and uninterruptible multi-phased pro-
cesses. Facts of the Distributive variant are relations between mereologically dispersed complexes
and their components, such as f light control subsystems, brake systems on automobiles, and texts
of multi-volume documents. As of this writing we were unable to develop satisfactorily definitive
delimitations and identification keys for these variants. We cannot therefore stipulate representa-
tion of them and their differences as a requirement here. Nevertheless, the correlate complexes dif-
fer in some of their analytic, constructive, and logistical attributes, and once a formal
characterization of these is developed, any minimally correspondent and capable product represen-
tation system should be enhanced to explicitly represent these variants and to provide facilities for
differentiating, instantiating, modifying, and querying them.

Integral variant complexes can be in one of two mereological configurations. These are Parti-
tioned and Bracteal. Entities standing in the Complex attribute position of 1st-order composition
instances containing null particulars (“!”) in their Element attribute positions are formalizations of
the Bracteal configuration rendered as soas. These instances represent the fact that the entities their
Complex attribute positions are completely partless—i.e., atomic. 

❙ Composition Requirements

Composition relations are typically quantified, qualified, and otherwise modalized in a variety of

1. Supplementarity

Rank taxon instances of the composition metatype are extensively supplementational, as
defined in paragraph 3.2.1.2 above. Rank individual instances of the composition metatype
are disjointly supplementational as defined in that paragraph. 

2. Complete Rank Uniformity 

Entities in the Complex and Element attribute positions in a particular composition instance
must be of the same metasystematic rank, including all elements of all extants of all meta-
structure type instances in every higher-order composition instance. 

3. Cyclicity

A given set of rank individual 1st-order composition instances must be acyclic. That is, a
particular complex cannot directly or indirectly contain itself as a component element.
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All ref lective composition instances must be acyclic. That is, a particular composition
instance cannot directly or indirectly contain itself as a component element. 

A given set of rank taxon 1st-order composition instances may be conditionally cyclic. That
is, one member of a complex taxon can directly or indirectly contain another member of
that same taxon as a component element, subject to requisite qualification condition rep-
resentation. 

A given set of composition instances containing at least one polymorphic higher-order compo-
sition instance may be cyclic. That is, an entity in the extant of an instance of a metastruc-
ture type contained in the extant of a composition instance can contain or be contained by
that instance. 

4. Existential Status

No entity in the Complex attribute position in a composition instance containing a null in
its Element position can be a complex in any other composition instance. That is, an atomic
entity is an indivisible matter of fact. 

3.2.2.2 Constitution

Constitution relations, depicted by the brown lines in Figure 4 above, are structures of the form:

<Constitution,<Superstrate,[Substrate := Substrate fl ! ] >>

where Constitution designates the Material Dependence relation taxon; Superstrate designates entities
that depend on constituent elements; where Substrate designates entities that are constituent enti-
ties; and where ! designates an instance of the null particular variant of identity. 

Like Containment, Material Dependence is a fundamental delimitative element of structure, and
constitution is, therefore, a crucial metatype required for representing it. This type is the second of
the two primary types represented by classical boms. Examples of constitution relations are:

<3ï,<PartTypex,RawMaterialTypey >> - a classical materiality relation in boms

<3ï,<CompositeMatTypew,MatrixMatlTypez >> - e.g., graphite fiber and epoxy

<3ï,<CompoundTypeq,ElementTyper >> - e.g., Water (H2O) and hydrogen

where the symbol “3ï” denotes constitution as noted on page 33. 

❙ Constitution Variants

Superstrata can be in one of two substantival configurations. These are Heteronomous and Inde-
pendent. Entities standing in the Superstrate attribute position of 1st-order constitution instances
containing null particulars (“!”) in their Substrate attribute positions are formalizations of the Inde-
pendent configuration rendered as soas. These instances represent the fact that the entities their
Superstrate attribute positions are completely self-subsistent—i.e., autonomous. 

❙ Constitution Requirements

1. Self-Application

A particular constitution instance may contain itself as an element in the Substrate attribute
position of its extant. That is, a particular fact of material dependence may constitute itself. 

2. Supplementarity

All self-applicative rank taxon constitution instances are extensively supplementational,
as defined in paragraph 3.2.1.2 above. All self-applicative rank individual constitution
instances are disjointly supplementational as defined in that paragraph. That is, a particular
fact of material dependence may not completely constitute itself. 
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3. Existential Status

No entity in the Superstrate attribute position of a null substrate constitution instance can
be a superstrate in any other constitution instance. That is, an autonomous entity is an
ultimate matter of absolute fact. 

3.2.2.3 Inherence

Inherence relations, depicted by the orange lines in Figure 4 above, are structures of the form:

<Inherence,<Bearer,Character,[Basis := Basis fl ! ] >>

where Inherence designates Exemplification relation taxon; Bearer designates entities that are exam-
plars of characteristics; where Character designates exemplified entities; where Basis designates enti-
ties that are determinants of characters as exemplified by entities; and where ! designates an
instance of the null particular variant of identity.

Exemplification is the third fundamental delimitative element of structure, and inherence is,
therefore, a critical metatype required for representing it. Examples of inherence relations are:

<2î,<PartTypex,ThroughHoley,SurfaceOfRevolutiona >> - a paradigm geometric feature

<2î,<Objectw,Colory,Optico-PerceptualStructd >> - a paradigm ‘secondary quality’

<2î,<7075-T7,TensileStrength,Microstructurel >> - a material property

<2î,<Processz,Reliability[.98],ImplementationConfigs >> - a process effectiveness metric

<2î,<results1.fm,“ ”,“/art/coreMetaTable.pct”>> - i.e., Fig 4 artwork, imported by reference

where the symbol “2î” denotes constitution as noted on page 33. 
Delineating features of entities such as topological and geometrical form, physical properties, and

other derivative traits, inherence is a formalization of structures implemented in geometric model-
ing, structural analysis, and imaging systems, and is not represented by classical boms. Nevertheless,
representing this relation and its related entity types as integral elements of structure is directly
entailed by the amplitude needs described in paragraphs 3.1.1 and 3.1.2 above. That is, particular
divergences between multiple genitive configurations of artifacts are grounded in specific artifact
characteristics, as we implicitly demonstrated in our discussions of articulation, factoring, and con-
solidation. Hence representing these characteristics and the relations they stand in is a prerequisite
of representing inter-configuration differences as relations between configurations.36 Moreover,
artifacts and their elements, including their specific characteristics, are all solutions to instrumental
requirements, as we pointed out in our discussion of the requirements representation need on page
24. Thus representing all the elements of artifact structure—including specific artifact characteris-
tics—is a prerequisite of representing the physical synthesis of needs and requirements as relations
between these and the elements and characters of artifacts that fulfill them. 

❙ Inherence Variants

There are two infraspecific variants of Exemplification—Faceted and Dispositional. Facts of the Fac-
eted variant are relations between entities and spatial features, such as surface deformations and
protrusions, holes, faces, and other varieties of topological and geometrical form. Facts of the Dis-
positional variant are relations between entities and properties, such as material, functional, eco-
nomic, and psychological attributes—indeed any variety of determinable magnitude. Facts of the
Dispositional variant are represented by inherence instances with quantification instances37 in
their Character attribute positions. That is, dispositional exemplifications are externalized manifes-
tations of quantities, in the most general sense of that term. Facts of the Faceted variant are repre-
sented by those with instances of any other metatype in their Character attribute positions—
particularly those with identity instances as characteristics—these being explicit objectifications of

36 Our formalizations of these relations and the roles of inherence in those are presented in paragraphs 3.2.4.1, 3.2.4.2,
and 3.2.4.3 below. 

37 Quantification is defined in paragraph 3.2.2.5 below. 
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features qua entities.
Entities exemplified by facts of either Exemplification variant can be in one of the configura-

tions. These are Attributive and Intrinsic. Entities standing in the Character attribute position of
inherence instances containing any instances other than null particulars (“!”) in their Basis
attribute positions are formalizations of the Attributive configuration rendered as soas. The first
two examples above (i.e., PartTypex and Objectw) are representative of this configuration and the type
of characteristic that distinguishes it. These characteristics are ascriptive—they are externalized man-
ifestations of entities in Basis attribute positions by entities in Bearer attribute positions. Entities
standing in the Character attribute position of inherence instances containing null particulars (“!”)
in their Basis attribute positions are formalizations of the Intrinsic configuration and the type of
characteristic that marks it. These characteristics are primitives—either within the scope of a given
representational context or system, or in the actual world. The properties of geometric primitives in
modeling systems are examples of the former; the speed of light in a vacuum c is an example of the
latter.

Any minimally correspondent and capable product representation system must implement
explicit representations of these Exemplification variants and configurations and provide facilities
for differentiating, instantiating, modifying, and querying them. 

❙ Inherence Requirements

1. Complete Rank Uniformity

Entities in the Bearer and Character attribute positions in a particular inherence instance
must be of the same metasystematic rank, including all entities in those attribute positions
in all extants of all metastructure type instances in every higher-order inherence instance.

Entities in the Basis attribute position in a particular inherence instance with bearers rank
taxon entities in its Bearer and Character attribute positions may be of rank individual. 

2. Cyclicity

A given set of rank individual 1st-order inherence instances must be acyclic. That is, a par-
ticular entity must either be an exemplar, an exemplified characteristic, or a genitive basis
of a characteristic as exemplified by a given individual entity.

All ref lective inherence instances must be acyclic. That is, a particular inherence instance
cannot directly or indirectly contain itself as a component element. 

A given set of rank taxon 1st-order inherence instances can be conditionally cyclic. That is,
two members of the same taxon can stand in the Bearer, Character, or Basis attribute posi-
tions of a particular inherence instance, subject to requisite qualification condition repre-
sentation.

A given set of inherence instances containing at least one polymorphic higher-order inher-
ence instance may be cyclic. 

3. Existential Status

No entity in the Character attribute position in a inherence instance containing a null in its
Basis position can be a characteristic in any Attributive configuration inherence instance.
That is, an atomic entity is an indivisible matter of fact.
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3.2.2.4 Qualification

Qualification relations are structures of the form:

<Qualification,<Correlate,[Evolute := Evolute fl ¡],[Adject := Adject fl <Adject 1,…,Adject n > fl ! ] >>

where Qualification designates the Conditionality taxon; Correlate designates either contingently oper-
ant entities or determinants of contingently operant entities; where Evolute designates transforma-
tion instances representing ontogenetic elements of correlate entities as defined in paragraph
3.2.3.5 below; where Adject i designates an entity that is nomologically related to the operance status
of its correlate entity; and where Null designates an instance of the null particular variant of iden-
tity. This relation type is a formalization of “causal dependence” or contingency and therefore is,
strictly speaking, a co-variant of constitution. Its variants, configurations, and relata—one of these
latter being a formalization of “effectivity”—are essential for representing provisionally or periodi-
cally operant matters of fact and are, accordingly, cornerstones of representational correspondence. 

❙ Qualification Variants

There are two positional variants of Conditionality—Subvenient and Supervenient. There are two
distinct material variants of the Evolute attribute of both positional Conditionality variants. These are
Particular and Indeterminate. There are two distinct material variants of the Adject attribute of both
Conditionality variants. These are Individual and Relational. There are two alternative extensional
forms of the Adject attribute. These are Univalent and Multivalent. Facts of the Univalent forms of
any variant can be in one of two distinct configurations—Nomologous or Autarkic. Facts of the Mul-
tivalent forms are necessarily Nomologous. There are two intensional variants of the Nomologous
configurations of Subvenient and Supervenient Conditionality. These are Acception and Exception. 

Any minimally correspondent and capable product representation system must implement
explicit representations of these Conditionality variants, forms, and configurations as subtypes of
the qualification relation type and provide facilities for differentiating, instantiating, modifying,
and querying them. Figure 31 in Attachment 2 graphically depicts these structures in some detail. 

1. Antecedence

Antecedence relations are structures of the form:

<Antecedence,<Superject,Inceptor,[Antecedent := Antecedent fl <Antecedent 1,…,Antecedent n > fl ! ] >>

where Antecedence designates the Subvenient variant of the Conditionality taxon; where
Superject designates contingently operant entities; where Inceptor designates an Inception
phase transformation instance in the ontogeny of the superject entity; and where Anteced-
ent i designates a causal prerequisite for operance of the superject entity. 

Antecedence instances with composition, constitution, or transformation instances in
their Superject positions are formalizations of component, raw material, or version “effec-
tivities” in BOMs. Specifically, antecedence38 instances (“QÜ”) with thetic (“0î”) rank taxon
composition instances in their Superject positions and at least one relation instance an Ante-
cedenti position are formalizations of a diverse class of phenomena commonly called “struc-
ture effectivity,” a specif ic and very common form of intrinsic variation—namely,
compositional contingency. Such modalized composition instances represent conditional Contain-
ment relationships; that is, relationships between complexes and their components that are
only operant (“effective”) under certain specific conditions. For example, the composition
instance in the structure

< [ ], <7ï,<F-18,ElectronicCounterMeassuresPod>>>
«…
÷<QÜ,< 7ïSOA,•,RadarSupressionFunction>>
÷…

38 This relation type is defined in paragraph 3.2.2.4 below. 
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re0presents the fact that members of the F-18 taxon stand in composition relations to mem-
bers of the ElectronicCounterMeassuresPod taxon.39 However, the presence of the modalizing
antecedence instance marks this relationship as contingent. That is, this Containment rela-
tionship is not canonically operant or invariant among all members of the F-18 and ECMPod
taxa, and, accordingly, not all f-18s contain ecm pods as components. A particular f-18 will
contain an ecm pod if and only if the RadarSupressionFunction element of the f-18 functional
architecture has been invoked— it is to perform an ew role in the context of a mission. 

2. Consequence

Consequence relations are converses of antecedence relations, and are structures of the
form:

<Consequence,<Subject,Continuance,[Consequent := Consequent fl <Consequent 1,…,Consequent n > fl ! ] >>

where Consequence designates the Supervenient variant of the Conditionality taxon; where
Subject designates determinants of contingently operant entities; where Continuance desig-
nates an Continuation phase transformation instance in the ontogeny of the subject
entity; and where Consequent i designates a causal successor of the operance of the subject
entity.

3.2.2.5 Quantification

Quantification relations are structures of the form:

<Quantification,<Datum,Magnitude,System,Unit, Quantity>>

where Quantification designates the Multeity taxon; where Datum designates entities that fall under a
quantificational scope; where Magnitude designates specific variants of the Multeity taxon; where
System designates a mensuration scheme delimiting Multeity taxon variants; Unit designates a dis-
crete divisionalization scheme for one or more magnitudes; and where Quantity designates a particu-
lar number of units. Examples of quantification relations are:

<#,<<fi,<<7ï,<C-130,Engine>>,2>>,Containment,Unitary,4>>

<#,<<fi,<<3ï,<Water,Hydrogen>>,2>>,Substance,SI,Mole,2>>

<#,<<fi,<<2î,<PartTx,Holey,¡>>,2>>,Cylindricity,ANSI Y14.5,Inches,.005>>

<#,<<7ï,<C-130,AftPluf>>,Location,C-130Grid,StationLine,158>>

where the symbols “#”,“fi”,“7ï”,“3ï”, and “2î”respectively denote quantification, indexicalization,
composition, constitution, and inherence as noted on page 33. 

Quantification40 instances (“#”) with Datum positions containing indexicals (“fi”) to Element posi-
tions in rank taxon composition instances are formalizations of “where used quantities,” a perva-
sive and essential characteristic of Containment represented by parts lists on engineering drawings
and by boms. Thus the soas in the structure

<[ ], <7ï,<C-130,AllisonTurbopropTypex >>>
«…
÷<#,<<fi,<7ïSOA,2>>,Multiplicity,MFS,Individual,4>>
÷…

represent the facts that members of the C-130 taxon stand in composition relations to members of
the AllisonTurbopropTypex taxon, and that, via the quantification instance modalizing that composition
instance, every member of the former contains exactly 4 members of the latter—in other words,
that each c-130 contains four Allison turboprop engines as component elements.41 Any minimally
correspondent and capable product representation system must provide facilities for instantiating,

39 The f-18 airframe contains a centerline pylon that is used to attach ordnance and certain mission-specific hardware
to the airplane. The ecm pod, which is basically an elongated bullet-shaped tank stuffed full of radar jamming and
other ew equipment, is a case in point. 

40 This relation type is defined in paragraph 3.2.2.5 below. 
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modifying, and querying quantifications of composition instances, regardless of metasystematic
rank.42

Quantification instances with Datum positions containing indexicals to Substrate positions in rank
taxon constitution instances are formalizations of “make from quantities,” a pervasive and essen-
tial characteristic of Materiality represented by materials lists on engineering drawings and by boms.
Thus the soas in the structure

<[ ], <3ï,<MountingBracketx,MIL-S-6758/4130>>>
«…
÷<#,<<fi,<3ïSOA,2>>,Mass,SI,Gram,50>>
÷…

represent the facts that members of the MountingBracketx taxon stand in constitution relations to
members of the 4130 variant of the MIL-S-6758 taxon (i.e., chrome steel), and that, via the quantifi-
cation instance modalizing that constitution instance, every member of the former is made out of
50 grams of the latter—in other words, that each individual mounting bracket of that type contains
four Allison turboprop engines as elements.43 Any minimally correspondent and capable product
representation system must provide facilities for instantiating, modifying, and querying quantifica-
tions of rank taxon composition instances.

3.2.3 Intrinsic Adjunct Metastructures

All extrinsic and processual variabilities within the structures of artifacts minimally consist in five
fundamental types of relations. 

1. Equivalence —the relation of substitutionality; 

2. Alternation —the relation of optionality;

3. Variation —the relation of diversity; 

4. Order —the relation of positionality; and,

5. Evolution —the relation of change. 

Any minimally correspondent product representation system must implement representations of
these five relation types and provide facilities for instantiating, modifying, and querying them.
Examples of entities standing in these relations are depicted in the table at the top of Figure 33 in
Attachment 2. 

41 The actual matters of fact are of course much more complicated than those represented by this simplistic example.
For instance, c-130’s in the process of being built don’t contain even one engine (let alone 4) until they reach a certain
stage of assembly, so the quantification instance itself should be qualified by an antecedence instance representing
this effectivity. 

42 Quantifications of rank individual composition instances are frequently employed to represent particular but indi-
vidually variable numbers of components in serialized “as-built” and “as-repaired” boms. 

43 The actual matters of fact are of course much more complicated than those represented by this simple-minded exam-
ple. For instance, c-130’s in the process of being built don’t contain even one engine (let alone 4) until they reach a
certain stage of assembly, so the qualification instance should itself be qualified by an antecedence instance repre-
senting its effectivity. 

Table 3. Intrinsic Relations
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3.2.3.1 Equivalence

Equivalence relations, depicted by the circular ring of green lines in Figure 5 below, are structures of
the form:

<Equivalence,<Substituend1,Substituend2,… n >>

where Equivalence designates the Substitutionality taxon; and where Substituendi designates an entity
that is completely interchangeable with at least one other entity. 

3.2.3.2 Alternation

Alternation relations, depicted by the blue lines bottom left in the Figure 6 below, are structures of
the form:

<Alternation,<Context,<Alternant1,Alternant2,… n >>>

where Alternation designates the Optionality taxon; where Context designates entities situating the
alternation; and where Alternanti designates an entity that is form, fit, function congruent with at least
one other entity. 

Figure 5.  Equivalence Relations

Figure 6.  Alternation Relations
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3.2.3.3 Variation

Variation relations, depicted by the green lines upper left in the above figure, are structures of the
form:

<Variation,<Baseline,<Divergence1,…,Divergence n > ,Variant>>

where Variation designates the Infraspecific Variety taxon; where Baseline designates entities that are
progenitor or canonical taxonomic configurations; where Variant designates entities that are deriva-
tive configurations of progenitor or canonical configurations; and where Divergencei designates an
additive or subtractive delta between variants and their respective baseline configurations. 

3.2.3.4 Order

Order relations, depicted by the curved grey lines in the above figure, are structures of the form:

<Order,<Ordinate,[Ordinal := Ordinal fl <Ordinal1,…,Ordinal n > fl ! ] >>

where Order designates the Positionality taxon; Ordinate designates entities standing in some relative
position with respect to others; where Ordinali designates an instance of the order relation type; and
where ! designates an instance of the null particular variant of identity. 

Figure 7.  Variation Relations

Figure 8.  Order Relations
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❙ Order Variants

There are two major extensional variants of Positionality—Contiguous and Furcate. There are two
principal alternative forms of Contiguous Positionality. These are Consecutive and Concurrent.
There are two principal alternative forms of Furcate Positionality. These are Excessional and Ingres-
sive. Facts of the Consecutive form of the Contiguous variant and the Ingressive form of the Furcate
variant can be in one of two configurations—Catenary and Terminal. Any minimally correspondent
and capable product representation system must accordingly implement explicit representations of
these four variants and two configurations as subtypes of the order relation type and provide facil-
ities for instantiating, modifying, and querying them. 

1. Sequence

Sequence relations are structures of the form:

<Sequence,<Ordinate,[Ordinal := Successor fl ! ] >>

where Sequence designates the Consecutive form of the Contiguous variant of the Position-
ality taxon; where Ordinate designates entities standing in a position within a contiguous
series; and where Successor designates an instance of the order relation type. Sequence
instances containing order relation instances in the Ordinal attribute position represent
facts related to proximate facts in an ordering. Those with null particulars in that position
represent facts terminating an ordering. Examples of sequence relations are:

Seqi: <Sequence,<<Composition,<X,Y>>,Seqj >>
Seqj: <Sequence,<<Composition,<X,Z>>,!>> (e.g., assembly ordering for X); 

Seqi: <Sequence,<Processq,Seqj >>
Seqj: <Sequence,<Processw,Seqk >> (e.g., process execution ordering); 

Seqi: <Sequence,<<Composition,<X,Y>>,Seqj >>
Seqj: <Sequence,<<Composition,<X,Z>>,!>> (e.g., assembly ordering for X); 

2. Coincidence

Coincidence relations are structures of the form:

<Coincidence,<Ordinate,<Coincident1,Coincident2,…n >>>

where Coincidence designates the Concurrent form of the Contiguous variant of the Position-
ality taxon; Ordinate designates entities that are in a parallel position with others in a con-
tiguous series; and where Coincidenti designates an instance of the order relation type. 

3. Ramification

Ramification relations are structures of the form:

<Ramification,<Ordinate,<Disjunct1,Disjunct2,… n >>>

where Ramification designates the Excessional form of the Furcate variant of the Positionality
taxon; Ordinate designates entities that are incident to the same position in a contiguous
series; and where Disjuncti designates an instance of the order relation type.

4. Convergence

Convergence relations are structures of the form:

<Convergence,<Ordinate,<Precessor1,Precessor2,… n >,[Successor fl ! ] >>

where Convergence designates the Ingressional form of the Furcate variant of the Positional-
ity taxon; Ordinate designates entities that are incident to the same position in a contiguous
series; and where Precessori and Successor designate instances of the order relation type.
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3.2.3.5 Transformation

Transformation relations, depicted by the red lines in the above figure, are structures of the form:

<Transformation,<Subject,[Delta := Delta fl ! ],[Evolute := Evolute fl <Evolute1,…,Evolute n > fl ! ] >>

where Transformation designates the Development taxon; where Delta designates relations of additive
or subtractive change; where Evolutei designates an instance of the transformation relation type;
and where null designates an instance of the null particular variant of identity. 

Transformation is, in actuality, a variant of the order metatype. That is, transformation is position-
ality of change, as opposed to any other ordinate type. It is defined here as a distinct metasystematic
peer of order because of its central role in delimiting the structures of ontogeny—i.e., versioning. 

Figure 9.  Evolution Relations
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3.2.4 Extrinsic Adjunct Metastructures

All divergences between multiple genitive artifact configurations minimally consist in three funda-
mental types of relations. 

1. Articulation —the relation of separation; 

2. Factorization —the relation of abstraction; and,

3. Consolidation —the relation of integration. 

Any minimally correspondent product representation system must accordingly implement explicit
representations of these three relation types and provide facilities for instantiating, modifying, and
querying them. Examples of entities standing in these relations are depicted in the table at the top
of Figure 33 in Attachment 2. A detailed discussion of them is presented in Simons and Dement [21]. 

3.2.4.1 Articulation

Articulation relations, depicted by the orange lines between the rocket nozzle image on the left

Table 4. Extrinsic Relations

Figure 10.  Extrinsic Relations

Figure 11.  Articulation Relations
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and right in the Figure 11, are structures of the form:

<Articulation,<Choate,[Intrastice := Intrastice fl <Intrastice1,…,Intrasticen ],<Segment 1,Segment 2,…,n >>>

where Articulation designates the Separation variant of the Transposition taxon; where Choate desig-
nates unitary elements of a particular choate entity configuration; where Intrasticei designates an
entity constituting an actual or potential processual interdiction with respect to a second configu-
ration of a given choate entity configuration; and where Segment i designates an entity constituting a
partition of the choate entity in the second configuration. 

3.2.4.2 Factorization

Factorization relations, depicted by the orange lines between the gears on the left and the gear
blank on the right in the Figure 12, are structures of the form:

<Factorization,<<Cognate1,Cognate2,… n>,[Cœnomorph := Cœnomorph fl <Cœnomorph1,…,Cœnomorph n >],Factor>>

where Factorization designates the Abstraction variant of the Transposition taxon; where Cognatei des-
ignates an entity that is phyletically related to other elements of a particular entity configuration;
where Cœnomorphi designates a shared character among cognate entities; and where Factor designates
an entity constituting a coincident bearer of one or more cœnomorphs in a second configuration
of a given entity. 

3.2.4.3 Consolidation

Consolidation relations, depicted by the orange lines between the three elements on the left and
the one on the right in Figure 13, are structures of the form:

Figure 12.  Factorization Relations

Figure 13.  Consolidation Relations
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<Consolidation,<<Isolate1,Isolate2,… n>,[Interstice := Interstice fl <Interstice1,…,Interstice n >],Combinant >>

where Consolidation designates the Abstraction variant of the Transposition taxon; where Isolatei desig-
nates an entity that is discontiguous with other elements of a particular entity configuration; where
Intersticei designates separation between discontiguous entities; and where Combinant designates an
entity constituting an integral entity encompassing discontiguous entities in a second configuration
of a given entity.

3.2.5 Intertypic Adjunct Metastructures

All structures of all artifacts minimally consist in five fundamental types of relations. 

1. Involvement —the relation of participation; 

2. Capacitation —the relation of provisionment;

3. Representation—the relation of objectification; and, 

4. Designation —the relation of nominalization. 

Any minimally correspondent product representation system must accordingly implement explicit
representations of these four relation types and provide facilities for instantiating, modifying, and
querying them. Examples of entities standing in these relations are depicted in the table at the top
of Figure 33 in Attachment 2. 

3.2.5.1 Involvement

Table 5. Intertypic Relations

Figure 14.  Involvement Relations
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Involvement relations, depicted by the orange ‘elbow’ line in Figure 14, are structures of the form:

<Involvement,<Type,Intension,Extension>>

where Involvement designates the Participation taxon; where Type designates taxa in a given represen-
tation metasystem; where Intension designates entities constituting context elements of facts of rep-
resentation system types; and where Extension designates entities constituting elements in the
extants of those facts. 

3.2.5.2 Capacitation

Capacitation relations, depicted by the orange arc line in Figure 15, are structures of the form:

<Capacitation,<Involvement,Means,Yield>>

where Capacitation designates the Provisionment taxon; Involvement designates instances of the
involvement relation type as defined in paragraph 3.2.5.1 above; Means designates entities compris-
ing implemental mechanisms or agencies; and where Yield designates entities constituting actualiza-
tions of antecedents (conditions or inputs) of involvement relation instances. 

3.2.5.3 Representation

Representation relations, depicted by the orange lines in the Figure 16, are structures of the form:

<Representation,<Concept,Content,Object>>

where Representation designates the Objectification taxon; where Concept designates taxa delimiting
facts of intentional content; where Content designates objectified facts—entities that are representa-
tions of entities; and where Object designates represented entities. A detailed discussion of repre-
sentation is presented in Smith [22]. 

Figure 15.  Capacitation Relations
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3.2.5.4 Designation

Designation relations, depicted by the orange lines in the above figure, are structures of the form: 

<Designation,<Context,Designator,Referent>>

where Designation designates the Nominalization variant of the Objectification taxon; Context desig-

Figure 16.  Representation Relations

Figure 17.  Designation Relations
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nates taxa delimiting nominal facts; where Designator designates entities that are denominations of
entities; and where Referent designates denominated entities.

3.2.6 Table of Metastructure Schemata

Table 6. Metastructure Schemata

<Composition,<Complex,[Element := Element fl ! ] >>

<Constitution,<Superstrate,[Substrate := Substrate fl ! ] >>

<Inherence,<Bearer,Character,[Basis := Basis fl ! ] >>

<Qualification,<Correlate,[Evolute := Evolute fl ¡ ],[Adject := Adject fl <Adject 1,…,Adject n> fl ! ] >>

<Antecedence,<Superject,Inceptor,[Antecedent := Antecedent fl <Antecedent1,…,Antecedent n > fl ! ] >>

<Consequence,<Subject,Continuance,[Consequent := Consequent fl <Consequent 1,…,Consequent n > fl ! ] >>

<Quantification,<Datum,Magnitude,System,Unit, [Value:= Value fl Range fl SOA] >>

<Equivalence,<Substituend1,Substituend2,… n >>

<Alternation,<Context,<Alternant1,Alternant2,… n >>>

<Variation,<Baseline,<Divergence1,…,Divergence n> ,Variant>>

<Order,<Ordinate,[Ordinal := Ordinal fl <Ordinal1,…,Ordinal n > fl ! ] >>

<Sequence,<Ordinate,[Ordinal := Successor fl ! ] >>

<Coincidence,<Ordinate,<Coincident1,Coincident2,… n >>>

<Ramification,<Ordinate,<Disjunct1,Disjunct2,…,Disjunct n >>>

<Convergence,<Ordinate,<Precessor1,Precessor2,… n >,[Successor fl ! ] >>

<Transformation,<Subject,[Delta := Delta fl ! ],[Evolute := Evolute fl <Evolute1,…,Evolute n > fl ! ] >>

<Articulation,<Individual,[Intrastice := Intrastice fl <Intrastice1,…,Intrastice n ],<Moiety1,Moiety2,…n >>>

<Factorization,<<Cognate1,Cognate2,… n>,[Cœnomorph := Cœnomorph fl <Cœnomorph1,…,Cœnomorph n >],Factor>>

<Consolidation,<<Isolate1,Isolate2,… n>,[Interstice := Interstice fl <Interstice1,…,Interstice n >],Combinant >>

<Involvement,<Type,Intension,Extension>> 

<Capacitation,<Involvement,Means,Yield>>

<Application,<Involvement,Device,Effect>>

<Instrumentalization,<Involvement,Agency,Solution>>

<Representation,<Concept,Content,Object>>

<Designation,<Context,Designator,Referent>>
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“We shape our buildings: thereafter they shape us.”

 

Winston Churchill, 1962 
4 Results Part II: Enterprise Operating System Definition
After nearly a year of planning and preparation, a program to ‘re-invent’ lmas,44 called the Lmas
Enterprise Architecture Program (leap), was launched in May of 1999. The aim of this program was
to enhance lmas competitiveness by deploying a new enterprise operating system for the company.
The specific objectives were to establish a formal enterprise Strategy process; to re-design the ‘core
value stream’ processes (i.e., Product Realization and its major subprocesses); to integrate these
two; and to streamline their respective organizations and infrastructure. 

Our prior involvement in planning for this program, together with our development of a solution
to the multiple bom reconciliation and other related product representation problems, had
equipped us to play a unique formalist role in this activity. Specifically, one major element of the
leap approach involved pioneering the use of the new formal methods and metasystematics we had
developed under mereos phases I and II to design new enterprise processes for lmas. Hence in
accordance with an agreement among all principal mereos program stakeholders, we were brought
into the program as architects, and the principal emphasis of our statement of work in mereos Phase
III was re-focused to accommodate that role.45 Our specific mission was to develop formal structures
and schematic content to frame, inform, and ‘vector’ the operating system design and deployment
activities. That is, we were primarily focused on formal operating system requirement definitions,
and on insuring that these were rigorous and systematic, complete, and traceable to stated leader-
ship intents—the attributes necessary to render formal definitions of use in vectoring and assessing
specific designs. In other words, most of the functions we were tasked to perform were analogous
to those performed by a systems engineering group in a product development program. Given that
the ‘product’ under ‘development’ was an enterprise operating system, one might suggestively label
these as enterprise engineering. 

44 Lockheed Martin Aeronautical Systems, Marietta, GA. 
45 The technical factors and strategic circumstances that brought about our involvement in leap were presented in para-

graph 2.6 of the Introduction.
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By late 1999, a corporate decision had been taken to consolidate the four LM aeronautical sector
companies into a single company headquartered at Ft. Worth—LM Aero. This decision rendered
leap unnecessary, and the program was accordingly terminated. However, the aim and specific
objectives of this consolidation were, for all practical purposes, the same as those of leap, albeit in
a sector-wide rather than a single company context. And although leap was incomplete when it was
overtaken by events, a great deal of work had been accomplished, and a great many lessons had
been learned. Because of these two factors we were asked to continue in essentially the same for-
malist capacity as before to support the ‘enterprise engineering’ activity of consolidation program. 

The utility of formalist activities, for example those such as ours in leap and later in the LM Aero
consolidation, and the value of their intrinsically abstract products are notoriously difficult to
clearly articulate, especially to those responsible for delivering concrete results. Nevertheless, an
understanding the formalist role in concrete endeavors is important for understanding the results
we present here. 

It is a practical matter of fact that organizations never have the resources or time required to
devise, let alone deploy, perfect responses to the challenges and opportunities that confront them.
Cogent actions and effective products in the real world always embody constraint-mediated bal-
ances between what is possible in principle and what is adequate in practice to meet the needs at
hand. The essential role of practitioners is to use their intuition, sustained and governed by their
experience, to strike such balances. That is, to determine the most realistically attainable propor-
tions of possibility and sufficiency that is feasible given the operant constraints—and, thereby, to
choose which actions will be taken among the available alternatives, and to consequently shape the
solutions that will be created. 

But novel, complex, and risk-intensive endeavors can overtax the experience and intuitive skills
of even the most gifted of practitioners. And a program to design and deploy a new operating sys-
tem for a major aerospace and defense contractor is most definitely a distinctive, very complicated,
and risk-laden endeavor. The essential role of formalists in such activities is to provision practitioners
with tools to augment their intuitive experienced-based skills and to inform the decisions they must
make in these kinds of circumstances. These ‘formal provisions’ invariably consist in at least the fol-
lowing four products. The first are precise and complete characterizations of the challenge or oppor-
tunity at issue. The second are delimitations ascertaining the boundaries of the possible solutions.
The third are derivations discerning the necessary elements of sufficient solutions, and distinguishing
these from elements which are not. The fourth are identifications of appropriate effectiveness criteria,
both for subsequent actions and for the decisions themselves.Taken together, these schematic tools
augment the clarity, precision, and depth of practitioner understanding; they frame the threshold
conditions of possible/sufficient balances; and, they pinpoint suitable measures for validating deci-
sions and governing subsequent actions. These tools do not replace experienced judgement or con-
crete action. But they can when properly exploited significantly enhance a practitioner’s abilities to
render effective decisions.

The value we have consistently sought to deliver via our formal enterprise engineering activities
should be clearer in light of the preceding remarks. Our mission was to provision cognizant lmas
and LM Aero practitioners with formal tools to facilitate their endeavors to re-design their mecha-
nisms and infrastructure of enterprise action. The approach we adopted to accomplish this was to
design an idealized operating system what we call the New Aerospace Enterprise (nae) operating
system, and to iteratively redact and document crucial elements of that design, thereby providing
LM Aero practitioners with useful definitions for their concrete purposes that were, nevertheless,
explicitly derived from and therefore traceable to what is formally possible. 

The activities we performed roughly consisted in needs identification and requirements defini-
tions, the latter encompassing methodology development, formal systematics, mission definition,
and schematic designs of enterprise operating system processes. We have organized our presenta-
tion of the results of those efforts along these same lines and in this order. Note that while these
results complete the Mereos Phase III sow, they are interim products of work in progress in the larger
nae operating system definition context. We are still actively engaged in that activity, and the
results described here do not represent the final products of this effort. 
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4.1 Enterprise Operating System Needs

Enterprises are intentional systems constituting agencies for rendering solutions to requirements that
ultimately originate from stakeholder purposes. Accordingly, enterprises are intermediate instrumen-
talities for accomplishing those aims—the solutions they produce provision stakeholder operations
for achieving them. 

The primary challenge faced by every enterprise is to attain and sustain success. Success obtains
when results of enterprise actions are instrumental solutions for operations that accomplish stake-
holder purposes. That is, success obtains when there is effective instrumentalization and applica-
tion.46 Success endures when effective instrumentalization and application are consistently
repeatable—i.e., reliably effective. Thus, at first glance, success hinges on creating and maintaining
alignments between stakeholder purposes and enterprise capabilities to realize solutions to the
intents, needs, and requirements deriving from those purposes. 

Enterprise capabilities subsist in the capabilities of enterprise operating systems—instrumentalities for
purposeful collective action. These are integrated ‘socio-technical’ systems comprising the pro-
cesses, organizations, policies, and infrastructure (facilities, methods and techniques, information
systems, etc.) that provision enterprises to act—to realize solutions that in turn provision accom-
plishment of stakeholder purposes. The inputs to an enterprise operating system are leadership
intents and objectives that define and prioritize stakeholder purposes. Its outputs are solutions to the
needs and requirements pertaining to those purposes. Its means of producing those solutions are
enterprise processes. Thus success ultimately hinges on creating and maintaining parity between
action program requirements deriving from enterprise objectives on the one hand, and enterprise
operating system capabilities to execute those programs and thereby satisfy those requirements on
the other. 

Achieving and sustaining this balance is exacting in stable environments and extremely difficult
in volatile ones, and business environments are more f luid today than ever. Moreover, increasingly
intense competitive pressures driven by factors such as globalization have compressed the time
enterprises have to respond to change. Enterprises in every business domain need operating systems
that both assure consistent performance and rapidly adjust to change in order to succeed and remain
competitive. 

The end of the Cold War initiated sweeping changes in the defense industry. Two of note were
dramatic reductions in the number and scale of weapon system acquisition programs and its conse-
quents: drastic diminution of the business base, collateral downsizing and subsequent consolida-
tion of the defense industrial base, and intensif ication of competition for what business
opportunities remain. Two superficially opposed trends sparked by these changes and by globaliza-
tion have also emerged. The first is the increasing tendency of governments to vigorously protect
their defense industrial infrastructures from extra-national competition and to sustain their capa-
bilities in the face of decreasingly frequent opportunities to exercise them. The second is a marked
increase in collaboration among defense contractors, both within and across national boundaries,
to pool scarce resources and to exploit complementary capabilities and congruent interests. In the
case of the Joint Strike Fighter (jsf) program, this cooperation has extended beyond collaboration
among contractors of different nations to include the governments of the nations themselves. Thus
sustaining competitiveness in this new aerospace and defense environment entails new enterprise
operating system capabilities to meet new needs, over and above basic effectiveness, reliability, and
agility. A sketch of the four most significant of these from an operating system design perspective
follows. 

4.1.1 Greater Product Realization Amplitude

One major consequence of globalization is that stakeholder populations are both much larger and
more diverse in their aims than ever before. The elements constituting defense program stakeholder
value are correspondingly more complex and multifaceted. Technical superiority is not the domi-
nating determinant of value it once was. Complex and abstract strategic factors, such as infrastruc-

46 An overly technical way of saying that enterprises succeed when their stakeholders do. 
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ture capability retention and economic asset multiplication, increasingly represent major
constituents of value, and the processes of determining and delivering these involves correspond-
ingly more comprehensive enterprise operating system processes. 

This in turn entails a major architectural change in the relationship of stakeholder value to the Prod-
uct Realization process. Specifically, the long-standing conception of Product Realization as the
principal and dominant enterprise mechanism for delivering value is simply too narrow to encom-
pass the realities of the new defense environment. Consider: the principal components of solutions
rendered by Cold War programs were technical systems. That is, if one envisions the total solution as
a cube, and that element of the solution produced by these programs as another cube, nested inside
the first one, the two were typically almost the same size. Hence the total solution and the techni-
cal solution were, for all practical purposes, co-extensive, and technical factors were the primary
determinants of value. However, this is simply no longer true; the technical jsf solution for example
constitutes a much smaller portion of the total jsf solution than did those of any prior program.
Success accordingly necessitates a greater parity between the strategic and technical axes of aero-
space and defense enterprises. Determining all the attributes constituting stakeholder value—not
just the technical attributes—is a critical enabler of attaining this parity. Delivering that total value
entails a process with a greater amplitude than classical Product Realization: it requires a suitably
capable Solution Realization process. 

4.1.2 Process Multi-Modality

One major consequence of the drastic diminishment of the aerospace and defense business base is
that far fewer business opportunities exist in traditional markets, making capture of these a matter
of survival and pursuit of new opportunities outside of these markets essential for sustainable
growth. Two readily accessible opportunities for growth are commercial applications of advanced
technology and complete logistical support of their own systems and those of others. The former
represents a means to exploit their vigorous innovation streams; the latter a means to exploit their
prodigious manufacturing capabilities. The strategic and technical ‘spin-back’ potentials of both
would convey significant benefits to the core business as well. 

However, these and any other significant opportunities for aerospace and defense enterprises are
situated in business environments that differ substantially from their traditional venues. Dominated
by market-driven commercially-oriented business models, the structures and modalities of these
environments are essentially foreign to classical defense contractor enterprises. That is, the
requirements-driven engineering-oriented business model of classical aerospace and defense enter-
prises ref lects the modalities of their core businesses. Their operating systems—specifically their
constituent enterprise processes—evolved within these lines and would not, accordingly enable
defense contractors to function competitively in purely commercial environments. 

A diversification technique called divisionalization is frequently employed to effect entry into new
markets while protecting existing positions in traditional core businesses. This typically involves
creating a new semi-autonomous ‘strategic business unit’ (sbu) in one form or another. Divisional-
ization can constitute an optimal solution to a variety of strategic and operational problems, and is,
in some cases, the only possible solution given regulatory constraints. Nevertheless, from a formal
enterprise engineering perspective, divisionalization is articulation, to invoke the relation of that
name defined in Section 3, and this solution to business model heterogeneity is not the only one
available. Subsumption—i.e., enterprise process generalization or multi-modality—is another solution.
Cogently designed enterprise processes capable of executing multiple business models (or substan-
tively divergent variants of a single model) can, in the right circumstances, yield the same perfor-
mance and effectiveness gains as articulating or creating distinct processes, without the
consequential duplication, integration problems, and loss of commonality. 

4.1.3 Action Multilaterality

There are two fundamental ways an enterprise can execute a process. The first is unilaterally—the
enterprise acts alone or at least is the dominant execution and governance agency of the process.
The second is multilaterally—the enterprise acts in concert with others. Unilateral action is effi-
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cient but requires total command of all the resources and capabilities to execute and govern a pro-
cess. Multilateral action is less efficient because it requires coordination. However multilateral
action does not require total command of all the resources and capabilities to execute a process; it
is a strategy to accomplish stakeholder purposes with less. 

The intensely competitive and global business environment places severe constraints on the
resources available to an enterprise to achieve and sustain success. Protecting core market share
requires sustaining an adequate business capture rate. Penetrating new markets requires balancing
investment with risk. The capability to act in multilateral partnerships with customers, suppliers,
and competitors is the most effective means available to achieve both of these objectives in the cur-
rent business environment. 

4.1.4 Totality and Autonomism

Toyota launched their “Toyota Production System” (tps) initiative in the 1950’s to integrate pro-
cesses, people skills, technology and information across a core element of their enterprise—the fac-
tory f loor. Their purpose was to create a product realization system; an operating system focused on
manufacturing and assembly of Toyota products. More recently, many other organizations have pur-
sued similar but broader initiatives to design and deploy enterprise-wide operating systems. Nota-
ble private sector examples are those of Chrysler and Alcoa; the Acquisition Reform initiative of the
U.S. Department of Defense is an illustrative public sector example. 

These recent initiatives are incremental steps towards satisfying the need for all-inclusive high-
performance enterprise operating systems. Each has yielded compelling tactical benefits and clear
strategic advantages. Collectively they also exemplify two limitations, albeit to varying degrees. The
first is partiality. No existing operating system in fact fully encompasses its respective enterprise;
each is incomplete to some extent. All tend to ref lect an emphasis on one or more areas of applica-
tion over others; each is suboptimal in some respect. Thus despite the very real value delivery
improvements these initiatives demonstrate, the enterprise operating systems produced by them
are, nevertheless, partial rather than total solutions. 

Existing operating systems require exceptional expertise to sustain and prodigious efforts and
expense to modify them—they are fragile. The f luidity of current business environments coupled
with the fragility of existing operating systems entails more effective mechanisms for change.
Enterprise operating systems are products of a process we call Enterprise Realization, and changing
them involves an iterative execution of this process, in situ. This process is outside the scope of
existing operating system capabilities to execute directly; that is, Enterprise Realization is not a pro-
cess of existing enterprise operating systems. Enhancing the effectiveness of enterprise change
entails embedding this process into operating systems—i.e., devolving the task to changing an oper-
ating system to the operating system itself. 
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4.2 Enterprise Operating System Requirements

For presentational purposes we have divided the requirements entailed by the four enterprise oper-
ating system needs outlined in paragraph 4.1 into three distinct groups—methodological require-
ments, metastructures, and design requirements. The latter have been further subdivided into
mission definition and enterprise process requirements. 

The requirements presented here ref lect our focus on systematic issues during Mereos Phase III
and our formalist role in leap and the subsequent LM Aero consolidation program. These should
not, therefore be construed in any way as constituting a complete requirements specification for an
enterprise operating system satisfying the needs articulated above. As we stated earlier, the nae
operating system design project is a work in progress continuing under other auspices. What fol-
lows describes requirements that were defined by the end of the mereos program. 

4.2.1 Methodological Requirements

The shortcomings exemplified by existing operating systems together with the needs identified in
paragraph 4.1 are conjunctively symptomatic of a methodological gap. All prior operating system real-
ization initiatives have been based on relatively informal processes that rely heavily on organiza-
tional experience and best practices in combination with methods and technology such as those
mentioned above. But the need to increase scope and effectiveness of these initiatives will generate
concomitant stresses on the realization processes—particularly on underlying methods. Existing
methods are simply incapable of producing total enterprise operating system solutions at the requi-
site levels of scale, performance, and sustainability; the incompleteness, suboptimality, and fragility
of systems produced by these methods are the results. This methodological gap is reminiscent of the
one that aff licted the early years of the space program. The family of methods now collectively
known as Systems Engineering were developed to fill that gap. An analogous discipline, which we
call enterprise engineering, is emerging to fill this one.

Enterprise engineering is an embryonic interdisciplinary field concerned with design, deploy-
ment, and sustainment of enterprise operating systems. Enterprise engineering accordingly com-
prises formal processes, methods, and techniques for producing and sustaining these systems. 

Enterprise engineering is a new synthesis of several existing disciplines. The dominant two of
these are systematics and systems engineering. At first glance, enterprise engineering bears a strong
resemblance to the latter. Like that discipline, it is formal; many of its central methods are (suitably
modified) systems engineering methods; and, it has also emerged in response to a need arising from
unique historical circumstances. However, one can be easily misled by this resemblance, as is illus-
trated quite nicely by a quote from a recent article in Aviation Week:

“This industry [A&D] invented systems engineering, but traditionally it has been applied to only half of
the business. If companies applied the same expertise to work, products would cost a lot less, quality
would be substantially better, and products would reach the consumer much faster.” [6] (Italics ours)

The fundamental idea expressed above is of course entirely sound. Who could rationally argue
against the benefits of bringing systems engineering rigor, traceability, and balance to the task of
designing ‘work’—i.e., enterprise processes? However the implicit premise that ‘work’ is the same
kind of thing as ‘product,’ and, therefore, that designing either of these is just a systems engineering
job is naive. It is also false. The LM Aero enterprise operating system (to invoke an example) is not
the same kind of thing as the air vehicle systems it produces. Specifically, it is more complex, more
abstract than any product system it produces, and it comprises intentional elements in ways distinct
from those of any other existing system. 

1. Complexity

One signature characteristic that distinguishes enterprises and their operating systems from
any other artifact producible by current technics is that they are more complex than the solu-
tions they produce.47 And, they are more complex in three distinct ways: they are taxonom-
ically, integrally, and frequently numerically more complex than any of their offerings.
Consider LM Aero and its operating system on the one hand and the f- on the other as
examples. Clearly there is a much larger range of taxonomic variation—differences in
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kind—among the elements constituting LM Aero than those constituting the f-. More-
over, the degree of intricacy—the number of interfaces between and relations among ele-
ments—of LM Aero far surpasses those between elements of the f-. And finally, at least in
this specific example, the sheer number of LM Aero elements far exceeds that of the f-. 

2. Abstraction

A second characteristic distinguishing enterprises and their operating systems from any
other artifact producible by current technics is that they are more abstract than the solutions
they produce.48 And, they are more abstract in two distinct ways: they are quantitatively and
qualitatively more abstract than any of their offerings. Consider again LM Aero and the f-.
Both the functional and physical architectures of LM Aero encompass a far larger quantity
of abstract entities than do those of the f-. Moreover, significant numbers of these
abstract elements are of a much higher rank, or ‘distance’ from the concrete world, than
are any of those constituting the functional and physical architectures of the f-. 

3. Intentionality

A third and perhaps the most far-reaching characteristic differentiating enterprises and
their operating systems from any other artifact producible by current technics is that enter-
prises are literally intentional or conscious beings, and enterprise operating systems comprise
intentional beings to a far greater extent and depend on them to a greater degree than any
enterprise offering.49 The vast majority of extant legal systems treat businesses and as well
as types of enterprises as individuals—as members of their respective societies, and like any
other individual, these legal systems entitle them with certain rights and charge them with
certain responsibilities within those societies. Enterprises such as LM Aero, like any other
intentional beings, sustain intentional states, are autopoietic, autonomous, and auto-onto-
genetic. No artifact producible by current technics exemplifies any one of these characters,
let alone all three of them conjunctively. 

These quantitative and qualitative differences in complexity, abstraction, and intentional consti-
tution distinguishing enterprises and their operating systems from the products they produce have
far-reaching methodological consequences. The constellation of issues pertaining to scale, intri-
cacy, and formal and intentional structures as subjects in their own rights take on a much larger and
much more critical role in an enterprise engineering context than they do in classical systems engi-
neering. Simplistically speaking, airplanes don’t design, build, and support airplanes, nor do they
develop and execute strategies, nor do they upgrade themselves—but enterprise operating systems
are intentional constructs that must do all of these things and more. While systems engineering
methods are capable of meeting the difficulties arising from greater complexity, albeit not without
some degree of stress, they are not capable of satisfying other unique methodological requirements
for successful operating systems design. 

Thus enterprise engineering cannot be just a variant or application of systems engineering. It must
instead constitute a new synthesis disciplines comprising the requisite unifying principles and tech-
niques as an integral gestalt. These are:

1. Systematics: the science of diversity [18.1], concerned with the formal structures of varia-
tion, taxonomy, and classification, which provides the integrating metastructures and con-

47 Of course one of the principal aims of advancing the engineering and manufacturing arts—specifically automation—is
to ‘invert’ this, thereby enabling simple enterprises to render extraordinarily complex solutions. The one-person cnc
machining job shop is a good example of this. 

48 One can characterize many of the advances in the engineering and manufacturing arts as aiming to invert this also—
to enable creation of increasingly more abstract artifacts, thereby offering greater capability with commensurate
decreases in requisite instrumentality, or entirely new, previously unrealizable capabilities. Software and electronic
computing machines (versus mechanical ones) are examples of the former; genetic engineering is an example of the
latter. 

49 The enterprise of so-called Artificial Intelligence seeks to eliminate this distinction by creating conscious artifacts,
but despite the claims of some of its market-driven proponents, this has yet to be achieved. 
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ceptual framework for enterprise engineering. 

2. Systems Engineering: the discipline concerned with design of life-cycle balanced systems,
which performs the analogous role in enterprise engineering of enterprise operating sys-
tems design. 

3. Strategic Management: the discipline concerned with action program definition and gover-
nance, which in enterprise engineering provides, via its methods, techniques for stake-
holder intent definition and enterprise capability analysis, and because of its subject
domain, a source for strategy process design. 

4. Informatics: the discipline concerned with design and development of effective (comput-
able) representation systems, which is used pervasively in enterprise engineering both as a
basis for information systems design and for enterprise engineering automation. 

5. Ontology: the “science of Being;” the discipline that, in conjunction with a suitably
informed phenomenology, is concerned with the forms of form and intentionality. Its role
in enterprise engineering is analogous to the role of mathematics in the natural sciences; it
provides the methods and techniques for the analysis of abstractions—i.e., pure formal
structure. 

Thus enterprise engineering is a new discipline, albeit in a synthetic sense rather than an analytic
one, and it is, accordingly, something over and above the mere sum of its elements. There are nev-
ertheless functional and historical analogies between enterprise engineering and systems engineer-
ing that, when articulated, serve to illuminate the crucial role enterprise engineering will play in
advancing business design, execution and management. Unfortunately this topic is outside the
scope of our discussion here. What we can say is that systems engineering evolved to address a
methodological gap, which was the root cause of several technical failures suffered by the American
space program in its early days. Enterprise engineering is emerging to address an analogous but dis-
tinct methodological gap, which is the root cause of the shortcomings of current enterprise operat-
ing systems. These limit operating system capabilities to consistently deliver superior value and
effectively respond to change—the two essential ingredients of strategic success.
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4.2.2 Metastructure

Enterprise operating systems are products of the Enterprise Realization process, a variant of the
Product Realization process. We pointed out the analogies between these two processes and their
respective products elsewhere, and will not repeat that discussion here. What we have not previ-
ously defined are the structural requirements for producing adequate definitions of enterprise operating
systems, their elements, and the relations between these. 

To gain an insight into the purpose of these requirements in the context of operating system def-
initions, consider the analogous relationship between the structures defined by ansi y 14.5 (“Geo-
metric Dimensioning and Tolerancing”) and feature definitions of mechanical product system parts.
This specification describes requirements for defining maximally interchangeable parts. It accomplishes
this by prescribing how both the positional and geometric characteristics are to be defined, and
how allowable positional and geometric tolerances for these characteristics are to be defined. The
metastructures represent an analogous mechanism for defining maximally rigorous and complete operat-
ing system elements. This is accomplished by prescribing what structures such definitions must
define, how these are to be specified, conditions for their use, and finally, the mechanism for defining
new derivative structures from the fundamental ones. Thus the 22 specific relation types depicted
above in Table 7 collectively constitute the necessary and sufficient metastructures for defining
enterprise operating systems and their elements satisfying the four enterprise operating system
needs previously outlined in paragraph 4.1. That is, definitions of any enterprise operating system
solutions to those needs must be explicitly framed in terms of these 22 structures.

The reader will no doubt note that the first 17 of these structures are the same as those enumer-
ated in Table 1 on page 37 in Section 3 of this document. The only differences between the two
tables are the examples presented to illustrate their applications. This coincidence is not accidental:

Table 7. Enterprise Operating System Definition Metastructures
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enterprise operating systems are products in every sense of that term, although as we pointed out
earlier, they differ from more familiar product systems in complexity, abstractness, and intentional
constitution. Because operating systems are products, there is no reason to suppose that the met-
aschematic requirements for their definitions would differ from those for any other complex product
system definition, excepting of course those requirements deriving from the aforementioned dif-
ferences individuating operating systems from other types of systems. And, in fact, almost all of
these metaschematic requirements are the same. Hence most operating system metastructure
requirements have already been defined in paragraph 3.2.1 of Section 3; these are incorporated
herein by reference. 

The remaining 5 relation types listed in Table 7 collectively constitute the metataxonomic struc-
tures required to define enterprise operating system elements and attributes that are not found in
typical product systems—that is, those which are unique to these types of systems. These structures
are extraordinarily abstract, and would require an extensive introductory presentation followed by
a very lengthy discussion to adequately describe them. As we do not explicitly invoke or refer to
any of these structures in this document, we elected to not to define these here.50

4.2.3 Mission Definition

Mission statements articulate the primary and invariant purposes of enterprises—they define what is
to be accomplished, independently of circumstantial specifics. Strategies delineate programs for
achieving these and other consonant but more particular aims—they define how missions are to be
achieved. Enterprise operating systems are instrumentalities for purposeful collective action—they
comprise the mechanisms for executing these programs. Mission statements are, accordingly, critical
for both rational strategy development and systematic operating system design. They constitute the
ultimate grounds for action, the ultimate criteria for evaluating results, and the ultimate source of
design requirements. 

Mission definition requirements in an enterprise engineering context differ from those in famil-
iar strategic management contexts. In the latter they articulate primary organizational imperatives
to a human audience, and should, accordingly, exemplify the attributes appropriate to that purpose.
From an enterprise engineering perspective, mission statements are enterprise operating system
needs statements, and must, therefore, be designed with that purpose in mind. The following quotation
below will help illustrate this point more clearly. 

“The ‘mission’ of a company is an important element in establishing the strategy of the organization.
Establishing the mission itself is usually a difficult and demanding task. Top management tends to ago-
nize for long periods of time over the development of a mission statement: the process involves negoti-
ation and compromise, but is usually leadership led—and depends upon critical input from the ceo.
Surprisingly, perhaps, despite all the effort expended, many mission statements tend to seem full of plat-
itudes and motherhood statements.

…Mission statements need to be communicated throughout the organization.… 

Good mission statements tend to be simple and easy to understand at all levels of the organization.…
For example, in the US General Electric Company, the mission for each business is to ‘be number one
or two in the world or sell it, close it, or fix it.’ Such a statement is readily understood and memorable.”
[4.1] 

Based on these statements, we can frame a thesis defining the requisite attribute of a mission defi-
nition in a strategic management context:

Good mission statements consist in transparent expressions of strategic intent. 

By “transparent”, we mean symbolic. That is, statements which are sufficiently evocative—allusive and
mnemonic—to engender universal understanding of the aims these statements express, and to pro-

50 Excepting correlation, these structures are the principal structures underpinning the discipline of systematics and
are, accordingly, described by that body of literature. Although now out of print and therefore somewhat difficult to
find, we would highly recommend that anyone interested in this topic acquire a copy of Principles of Systematic Zoology
[18] and study it. 
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mote operable concurrence among various interests concerning those aims. In a word, statements
that impel focus. 

Although memorability and evocativeness are useful attributes in an enterprise engineering con-
text, something else is required, which we state as a another thesis:

Good mission statements consist in effective expressions of strategic intent.

By “effective,” we mean actionable. That is, statements which are sufficiently definitive—specific and
precise—to enable systematic development of operating systems capable of executing the action
programs required to achieve the aims these statements express, and to facilitate cogent selection of
measures of effectiveness for evaluating both designs for these systems and outcomes of their
actions. In a nutshell, statements that sustain operational traceability. 

Producing an effective mission definition instance presupposes a suitable definition of the mission
taxon itself. Figure 18 graphically depicts the definition of this taxon we developed during Mereos
Phase III, and a brief description of its elements follows. 

Figure 18.  Mission Definition Elements
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❙ Delimitation

The four major elements constituting the delimitation element of the mission taxon collectively
define the situating environment of its strategic intentions including the agencies that sustain those
intentions, thereby determining the boundaries of permissible action for achieving that mission. 

Authentication

The authentication element of the mission taxon identifies the agency authorizing the enterprise to
undertake that mission. 

Constitution

Not all actions in pursuit of a mission are permissible. There are constraints on what actions the
enterprise can take to achieve its mission. These constraints are expressed as ‘value’ statements or
fundamental tenets, and are embodied by core values that govern the actions of the enterprise and its
stakeholders. The constitution element of the mission taxon defines these fundamental tenets that
guide the actions of the stakeholders in the enterprise. These tenets represent the sources from
which the nomological elements of the assurance element are derived.

Stakeholders

The stakeholders element of the mission taxon identifies those agencies possessing interests in the
enterprise. These agencies comprise individuals, corporate entities, governments, and societies
whose strategic purposes actually or potentially entail the enterprise as an instrumentality for
accomplishing those purposes. Business enterprises typically comprise 9 primary stakeholder
groups, as enumerated below. 

1. Customers

Customers are agencies that receive goods and services from an enterprise in return for an
agreed upon valuation in some medium of exchange. 

2. Employees

Employees are individuals that receive regular compensation from an enterprise in
exchange for regular performance of assigned tasks. Management is a variant of employee. 

3. Superiors

Superiors are agencies that authoritatively define superordinate intent and effectiveness
measures to which all enterprise intent and assurance is subordinate, and which cede enti-
tlements to provision an enterprise to execute that intent.

4. Stockholders

Stockholders are agencies that own or hold one or more shares in an enterprise. 

5. Suppliers

Suppliers are agencies that furnish goods and services to an enterprise in return for an
agreed upon valuation in some medium of exchange. 

6. Unions

Unions are agencies consisting of employees of one or more agencies that share common
interests and act collectively to inf luence employment policies and practices.

7. Peers

Peers are agencies satisfying one of the following two conditions. 

0.1. A peer is an agency that shares an enterprise’s superiors, is of equal or analogous
rank to an enterprise in superordinate context, and thus is an executor of the same
superordinate intent as that enterprise. 
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0.2. A peer is an agency that does not share an enterprise’s superiors, shares at least one
strategic or tactical intent with that enterprise, and has explicitly agreed to pool
resources, coordinate actions, and share the products and effects resulting from
those actions in pursuit of that intent. These latter are partners. 

8. Communities

Communities are agencies consisting of individuals acknowledging a unity of purpose,
common interests, or common culture. 

9. Competitors

Competitors are agencies offering similar or equivalent products and services in the same
markets as those offered by an enterprise, who are engaged in executing similar or identical
intent, and who are not peers or superiors of that enterprise.

Effectivity

The effectivity element of the mission taxon delineates the conditions under which a mission is
operant for an enterprise. 

❙ Mission Intent

The central elements of the mission taxon are statements of strategic intent. Definitive characteriza-
tions of strategic intents consists in rigorous definitions of their elements and the elements of their
situating contexts, produced via the Intent Formalization process described in paragraph 4.2.4.2
below. 

❙ Mission Assurance

The two major elements constituting the assurance of the mission taxon delineate measures for
evaluating the effectiveness of action programs undertaken to achieve the aims of that mission. A
brief discussion of these elements is presented in paragraph 4.2.4.3 below. 

4.2.4 Enterprise Processes

One of our efforts consisted of requirements definition for and schematic designs of enterprise
operating system processes. Our specific tasking was to provide systematic answers to the following
questions. 

1. What is an enterprise process?

2. What are the major enterprise processes?

3. Which of these are the most critical to overall strategic success? 

4. What are appropriate performance measures for each of the enterprise processes?

We produced three principal products in response to this tasking. The first was a formal character-
ization of all principal enterprise operating system processes. A summary of this is presented in the
next paragraph. The second was a detailed outline of the intent formalization process, which is
one of the three critical enterprise processes from both a strategic management and an operating
system perspective. This is presented in paragraph 4.2.4.2. The third was preliminary work on a tax-
onomy of Measures Of Effectiveness (moes). The specific issues we addressed on that topic are sum-
marized in paragraph 4.2.4.3. 

4.2.4.1 Enterprise Process Characterizations

❙ Definition

The following is an abstract of an exhaustive formal delimitation of the taxon enterprise process
which we produced in response to the question:

What is an enterprise process?
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This result enabled practitioners to systematically determine whether a given process under consid-
eration is, in fact, an enterprise process, a subsidiary process, a function, or an action, or an enter-
prise-specific implementation of one or more of these. Such determinations are critical steps in
operating system design. 

Definition: enterprise

Enterprises are agencies for rendering solutions to requirements that ultimately originate from stake-
holder purposes. Accordingly, enterprises are intermediate instrumentalities for accomplishing those
aims—the solutions they produce provision stakeholder operations for achieving them. We can
readily infer three formally useful facts from this informal characterization by structuring it in
terms of the instrumentalization relation scheme.51 

1. As enterprises are implementation agencies, they necessarily stand in agency attribute
positions of instrumentalization relations. Thus, for a given enterprise x:

<Instrumentalization,<Involvement,Enterprisex,Product>>. 

2. From the above it easily follows that solutions rendered by enterprises necessarily stand in
product attribute positions of these relations. Thus again for a given enterprise x:

<Instrumentalization,<Involvement,Enterprisex,<Solution1,…,Solutioni,…,Solutionn >>>.

3. Purpose/operation pairs constituting relations between stakeholder aims and accomplish-
ment methods are the sources of solution requirements. Accordingly these necessarily
stand in involvement attribute positions:

<Instrumentalization,<<purp1 I op1,…,purpi I opi,…,purpn Iopn >,Enterprisex,<Solution1…n >>>. 

Thus in the context of the current question, an enterprise is an entity instantiating the agency
attribute of at least one instrumentalization instance:

<Instrumentalization,<<purp1…n I op1…n >,Enterprisex,<Solution1…n >>>

Definition: Process

Processes are regular and definite successions of interrelated activities that yield consistent and
determinate results. Enterprise processes are customarily characterized in the management litera-
ture as specific variants exemplifying two additional characteristics. The first is applicability—that
their outputs necessarily constitute ‘value’ to the ‘customers’ of the process. The second is exten-
sive totality or completeness—that they encompass an entire ‘value chain’ relative to the ‘customers’
of the process. This attribute is why many call enterprise processes ‘horizontal;’ or ‘end-to-end’
processes. We will explicate completeness now; applicability will follow that. 

Complete processes are ontogenies—courses of activities constituting entire entity life cycles from
beginning to end. We can usefully recast this informal characterization in terms of the realization
relation scheme,52 thereby establishing the formal fact that complete processes necessarily stand in
the occurrent attribute positions of realization relations. Thus for a specific complete process CP
encompassing the life cycle of a given entity x we obtain:

<Realization,<CPx,Inceptionx,Continuationx,Terminationx >>

There are three positional variants of complete processes of interest to us here: primary, secondary,
and tertiary. These variants are defined in terms of inverse ref lective realization order: 1st-order real-
ization instances are complete tertiary processes; 2nd-order realization instances are complete sec-
ondary processes; and, 3rd-order are of course primary. Secondary or major subprocesses of complete
processes are phases of ontogenies—successions of actions or subprocesses constituting all three
subsidiary subphases of one of three specific stages of entity life cycles. That is, secondary pro-
cesses also necessarily stand in the occurrent attribute positions of realization relations. How-

51 Instrumentalization is a variant of the capacitation relation type defined in paragraph 3.2.5.2 of Section 3. 
52 Realization is the occurrent variant of the correlation relation type.
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ever, as these are subprocesses of complete processes, instances of these relations are necessarily
situated in at least one containing realization instance. Thus for a specific secondary process SP

encompassing the inception phase in the life cycle of entity x we obtain:

<Realization,<CPx,<Realization,<SPx,InceptINCEPTION
x,ContContinuation

x,TermTermination
x >>,Continuationx,Terminationx >>

where for InceptINCEPTION
x read “inception phase of inception phase of x”, and so forth. 

Tertiary or subprocesses of complete process subprocesses are realization “leaves” relative to a
particular ontogeny. That is, they comprise the ‘lowest-level’ 1st-order variants of complete pro-
cesses; all elements of complete tertiary processes are either partial processes, actions, or func-
tions. Tertiaries are phases of phases of ontogenies and, as one can easily infer, they are successions of
actions or subprocesses constituting all three atomic phases of a subsidiary subphase of a specific
entity life cycle stage. 

Definition: Enterprise Process

In light of the preceding definitions, enterprise processes are clearly realization processes of instru-
mentalization relation elements, satisfying exactly one of the following four conditions:

1. The inputs to the process are requirements originating from at least one stakeholder pur-
pose, and the results of that process are solutions to those requirements. That is, the pro-
cess is a solution realization process executed by the particular enterprise in question. 

2. The inputs to the process are one or more stakeholder purposes, and the outputs of that
process are input requirements to a solution realization process and directives governing
execution of all enterprise processes, including that process itself. That is, the process is
strategy realization (i.e., governance; management) process executed by the particular enter-
prise in question. 

3. The inputs to the process are action directives to the particular enterprise in question that
are direct outputs of a governance process of that enterprise, and the outputs of that pro-
cess are either (a) inputs to at least one enterprise process, possibly including that process
itself, or (b) infrastructure directly enabling execution of at least one enterprise process,
possibly including that process itself, That is, the process is an enterprise realization process exe-
cuted by the particular enterprise in question. 

4. The process in question is either (a) a complete secondary or (b) a complete tertiary real-
ization process as defined above of an enterprise process satisfying exactly one of the prior
three conditions. That is, the process is a major subprocess of an enterprise process or a
subprocess of a major subprocess of an enterprise process. 

An enterprise process is, accordingly, a process executed by an enterprise that meets at least one
of the following criteria:

1. it directly renders a stakeholder solution; 

2. it governs the enterprise; 

3. it creates, modifies, or sustains the enterprise itself; or,

4. it is a complete secondary or tertiary enterprise process subprocess. 

Note also that applicability—that characteristic obtaining when process outputs in fact constitute
‘value’ to the ‘customers’ of the process— is defined as satisfaction of the above criteria. 

❙ Taxonomy

The following is an overview of a formal taxonomy of enterprise processes which we produced in
response to the question:

What are the major enterprise processes?

This result provided practitioners with an enumeration of all first and second-level enterprise pro-
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cesses and their primary attributes, as well as third level processes and their attributes. This taxon-
omy was intended to be used by practitioners for several different purposes, notably to verify
completeness of operating system process designs, and to assess alignments of these to an optimal
configuration. 

It is self-evident from the definition of the enterprise process taxon summarized above that
there are necessarily exactly three principal or ‘top-level’ enterprise processes, as there are no other
processes at this rank that satisfy the conditions stipulated by that definition. These are:

1. Strategy Realization

2. Enterprise Realization

3. Solution Realization

These three primary processes are depicted by the rows in Figure 19 below labelled purpose,
agency, and artifact, respectively. 

We use term realization in a process name to informally signify that the process is life-cycle com-
plete in the sense defined earlier, and to distinguish such processes from those which are not. 

The vertical axis of the diagram depicts the instrumentalization relation between stakeholder
purposes the three primary enterprise processes and their products, and is a graphical rendering of
our definitional remarks concerning enterprise above. 

The secondary or ‘second-level’ enterprise processes together with their principal products, are
depicted by the cells in the diagram. These also constitute the major phases of the primary enter-
prise processes, the generic names of which are depicted by the columns labels in the diagram.
There are exactly nine secondary enterprise processes. We will not describe them all here. One of
them (intent formalization, depicted by the upper-left cell) is described in some detail below. The
three cells in the bottom row depict the processes commonly called ‘Product Definition,’ ‘Product
Delivery,’ and ‘Operations & Support’ in defense contracting circles. These are the major subpro-
cesses of the Solution Realization process. The three cells in the center row depict specific variants

Figure 19.  Principal Enterprise Processes
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of Solution Realization subprocesses representing those constituting the enterprise operating sys-
tem life-cycle—i.e., the major subprocesses of the Enterprise Realization process. 

The tertiary or ‘third-level’ processes are not shown on this diagram, although one group of
them—the subprocesses of Intent Formalization—are depicted in the diagram on page 73. There are
nominally 27 tertiary processes, all of which satisfy the conditions for being enterprise processes and
are, therefore, important operating system processes. Due to similarities among them which enable
us to consolidate triples of them into a single process, there are actually only 9 core tertiaries, each
encompassing 3 distinct variants. Thus there are, as a formal matter of fact, exactly 21 significant
processes constituting an enterprise operating system—9 elemental and 12 enterprise processes. All
other processes are accordingly either:

1. Variants of one or more of these processes; 

2. Elements of one of these; 

3. Variants of elements; 

4. Impositions of extrinsic regulatory requirements, or;

5. Unnecessary, and therefore superf luous. 

❙ Identifications

The following is brief summary of the arguments supporting our identification of Intent Formaliza-
tion and Solution Realization as the two processes that are most critical for enterprise success, pro-
duced in answer to the following question:

What enterprise processes are the most critical to overall strategic success?

This identification enabled practitioners to focus their actions on maximizing the strategic viability
of the enterprise. 

Enterprises are maximally instrumental (effective) in accomplishing stakeholder purposes when
their actions yield total solutions to needs and requirements that are veridical derivatives of operations
executed by stakeholder to accomplish those purposes. A formal definition of total solution was one
result of our activities in support of leap and is not reproduced here, although an extract from that
definition is used to illustrate the Explication process in paragraph 4.2.4.2 below. A definition of “ver-
idically derivative” requirement is sketched in that same paragraph. 

The primary relationship of interest in enterprise engineering is accordingly that between
requirements and solutions—namely, the application relation defined in paragraph 3.2.5.2 of Sec-
tion 3, and depicted by red line in the diagram in Figure 20 below. A principal formal magnitude
associated with this relation is Capability, defined as capacity for effective action, and this is a primary
magnitude of interest in enterprise operating system design. 

There are exactly two subsidiary positionally distinct attributes of Capability—Value and Quality.
Value is fitness for possession. Quality is fitness for application. These are the ultimate attributes of interest
for optimization in enterprise engineering. Capability is the only determinant that matters to stake-
holders—it is the quantity of direct and operant instrumentalization in stakeholder contexts—and
Value and Quality are the only salient measures of that quantity in those contexts. Thus the central
focus of successful enterprise engineering is Capability Optimization—maximization of the value and
quality of stakeholder solutions. 

The two most crucial operating system processes enabling that are Intent Formalization and Solu-
tion Realization. Intent Formalization is the process constituting the Definition phase of the Strat-
egy Realization process, depicted by the upper left cell of the diagram in Figure 19. This process is
summarized in the next paragraph. Solution Realization is one of the three primary or ‘top-level’
enterprise processes, depicted by the bottom row of that diagram. It is a generalization of Product
Realization, designed to address the amplitude and multi-modality needs described in paragraphs
4.1.1 and 4.1.2, respectively. A formal definition of this process was still under development at the
end of Mereos Phase III. 
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4.2.4.2 Intent Formalization

The Intent Formalization process is one of the two processes which are critical to the strategic suc-
cess of an enterprise. This section presents excerpts of a document providing a detailed formal def-
inition of this process. This document provided practitioners with information needed to design an
enterprise-specific implementation of this crucial process. 

❙ Description

Purposes must be explicitly defined to enable actions to be devised and executed to accomplish
them. Requirements antecedent to those purposes must be identified to enable the synthesis, devel-
opment, and use of solutions for implementing actions to accomplish them. Qualification criteria
must be explicitly defined to enable governance of these actions, and to enable determination of
the value of solutions that is necessary for them to fully provision sufficiently effective actions.
Thus definitization is crucial to purpose accomplishment. 

Some purposes depend on the successful attainment of others in order for them to be accom-
plished. More precisely, some of the states designated by particular intents articulating these pur-
poses are dependent upon antecedent states. Such states cannot therefore be actualized unless the
antecedent states are also actualized. Thus identification and analysis are crucial to purpose accom-
plishment. 

Purposes typically exemplify tremendous variations in several dimensions. They range from the
abstract to concrete; from the unattainable to the trivial; from the short-term to the long-term.
Some purposes are identical, some are congruent, some are diametrically opposed. Capabilities and
resources are finite. It is, accordingly, almost always impossible for an enterprise to achieve the all
of the aims of its stakeholders to the degrees they desire. An achievable and acceptable balance
must be struck. Thus systemization is crucial to effective and efficient purpose accomplishment. 

Intent Formalization is the enterprise process for purpose definitization and systemization. This

Figure 20.  The Capability Relation and Attributes
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process is one of nine secondary enterprise processes and one of the three major subprocesses of
the Strategy Realization process. 

The primary inputs of Intent Formalization are stakeholder purposes and a formal mission defini-
tion for the enterprise.53 Its two primary outputs are balanced sets of enterprise objectives represent-
ing actionable optimal configurations of stakeholder purposes, and associated measures of
effectiveness (moes) for these. These moes are accordingly formal determinations of requisite stakeholder
value, as interpreted by enterprise management so as to be consonant with enterprise capabilities,
policies, and environmental constraints. Therefore, Intent Formalization is a generalization of the pro-
cess called Customer Value Determination in some management literature. 

❙ Intent Formalization Subprocesses

There are three subprocesses of Intent Formalization, depicted by the unghosted cells in the dia-
gram in Figure 21 above.

Intent Explication

53 A summary of the elements of the Mission Definition structure is presented in paragraph 4.2.3 above. 

Figure 21.  Intent Formalization Elements
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The term explication refers to the process of transforming an informal or incomplete definition into a
formal and complete definition—in this context a definition of a stakeholder purpose. Explication
is a variant of the formal systematic process called delimitation. Intent explication is the process that
transforms informal or implicit statements of stakeholder purpose into rigorously formal and sys-
tematically complete statements of strategic intent. 

The primary inputs to this process are, accordingly, statements of purpose originating from stake-
holders themselves and intelligence concerning those purposes. The outputs are fully instantiated
and validated instances of the Architecture Element structure, depicted by the drawing in Figure 30
on page 99 in Attachment 2. These comprise fully elaborated and analyzed configurations of the
input purposes in that form, including definitive moes for accomplishments of the explicated
intents. The Architecture Element structure is a adaptation of our metasystematics of taxon, tailored
for this kind of analysis and for downstream enterprise operating system design. 

Purposes, strategic intents which articulate them, and objectives representing correlate enterprise
aims are all special kinds or variants of desiderative intentions. Desiderative intentions are, in turn,
special kinds of intentions, all of which of interest to us here are propositional attitudes sustained by
agencies. 

An agency is either a self-aware sentient being that is capable of autonomous action, or an inte-
gral collective of these that is capable of united and autonomous action. Examples of the first are
human beings; examples of the second are enterprises such as LM Aero. 

A propositional attitude is a mental state that consists in a proposition and an assertoric mode. An
assertoric mode is an intentional ‘orientation’ or kind of attitude of an agency with respect to a
proposition. These are several assertoric modes. Four common one are imperative, declarative, interrog-
atory and desiderative. A proposition in imperative assertoric mode is a directive that is expressed by a
command; one in declarative mode is a predication expressed by a statement, one in interrogatory
mode is a query expressed by a question, and a proposition in desiderative mode is an aim expressed
by statement of a purpose, intent, or an objective. 

A proposition is a variant of phenomenological or cognitive content of a mental act that designates
or objectifies a state of affairs (soa): for our purposes here, a proposition is an soa.54 Thus stakeholder
purposes, strategic intents, and enterprise objectives are soas representing states that one or more
agencies aspire to be actual. Soas were described in paragraph 3.2.1.1, Results Part I beginning on
page 28. There we employed soas as a notational device for defining product representation meta-
structures. Here their role is objective rather than merely descriptive: the principal entities involved
in all three Intent Formalization subprocesses are soas or soa schemes—the formal structure of this
kind of intentional content—and Intent Explication is, for all practical purposes, taxonomic delimitation
of the elements of soa schemes representing strategic intents.55

As we mentioned earlier in paragraph 4.2.3, the formal counterpart of top-level projective intent
defined by the mission definition we helped develop for lmas during mereos Phase III was Focus On
Total Solutions. We did not complete our explication of this intent before leap was overtaken by
events; however we have included an extract of this to illustrate what the early ‘descriptive’ stage of

54 Those familiar with the content theory of intentionality will no doubt wince at the conf lation of content with con-
cept in this definition, not to mention the conf lation of the intended soa with its objectification. While we both
fully understand and adhere to these distinctions privately and while engaged in our own formal work, they are sim-
ply not relevant for our purposes here, and introducing them would make an already difficult and abstract narrative
even less accessible than it already is. 

55 Soa schemes were also described in paragraph 3.2.1.1; as we pointed out there, they are really syntactical shortcuts
for delimitation soas. Thus Intent Explication really is Delimitation—allowing for our deliberate conf lation of inten-
tional content (soa schemes and their elements) with object (taxa and their characters). 
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this process involves—to convey a “feel” for formal explication.

Focus
Focus is exactly one of the two following types of intentional structure:

1. Convergence 

A focus is a multiplicity of intentions satisfying one of the following two conditions:

1.1. Every intention constituting that multiplicity objectifies the same soa as that
objectified by the operant intention in the strategic context delimiting that mul-
tiplicity of intentions; that is, all intentions in that multiplicity are co-involute to
the operant intention of the delimiting strategic context. 

OR

1.2. All soas objectified by all intentions constituting that multiplicity are congruent to
the operant intention in the strategic context delimiting that multiplicity of
intentions. 

2. Interdiction

A focus is a multiplicity of intentions satisfying exactly one of the following two condi-
tions:

2.1. Every intention constituting that multiplicity objectifies the same soa; that is, all
intentions in that multiplicity are co-involute, 

AND 

that soa is the inhibition sufficiency condition for the soas objectified by all
operant intentions involved in the strategic context delimiting that multiplicity
of intentions which are divergent from the operant intention of that strategic
context. 

XOR

2.2. All soas objectified by all intentions constituting that multiplicity are congruent, 

AND

all soa objectified by all intentions constituting that multiplicity collectively
constitute the inhibition sufficiency condition for the soas objectified by all other
operant intentions involved in the strategic context delimiting that multiplicity
of intentions which are divergent from the operant intention of that strategic
context. 

Solution
A solution is a system that is an instrumentality in at least one action, where at least one conse-
quent of that action is an antecedent to accomplishment of at least one strategic purpose. 

System

A system is a product-process gestalt. 

<[ ],<FOCUS,<SOLUTIONS,LMAS>>> 
|
÷<TOTAL<INDEXICALIZATION,<FocusSOA,1>>>>
÷
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Intent Derivation

Intent Derivation is the strategic enterprise engineering analog of the technical systems engineering
process called requirements identification and analysis. Like its analog, Derivation is basically an inverse
root cause analysis process. Unlike its analog, Derivation is principally concerned with the analysis
of strategic antecedence of all stakeholder intents, not just antecedence analysis of technical Cus-
tomer intents—a very difficult and abstract undertaking indeed. The inputs to Intent Derivation are
the explicated formal intents articulating stakeholder purposes, created as outputs of the Explica-
tion subprocess. The intermediate outputs of this process are fully instantiated and validated instances
of the Antecedence and Consequence structure depicted by Figure 31 on page 100 in Attachment 2.
These structures represent nominal identifications of intents whose accomplishments constitute

Product

A product is a continuant that is an output or reduct of at least one occurrent.

In the context of this explication, a product is a continuant that is an output or reduct
of an at least one action or at least one process. 

Process

A process is a nomologous ontogen. 

In the context of this explication, a process is a nomologous ontogen
satisfying at least one of the following two conditions: 

1. At least one delta of at least one evolute constituting that ontogen is
an action. 

2. At least one delta of at least one evolute constituting that ontogen is
a process satisfying the above condition. 

That is, in the context of this explication, a process is a nomologous ontogen
in which at least one agency is involved in its realization. 

Gestalt

A gestalt is an integral co-concrescent complex. 

Instrumentality

An instrumentality is a means employed by at least one agency in the execution of
an action. 

Agency

An agency is one of two entities:

1. An agency is a self-aware sentient being capable of action. 

2. An agency is a collective of self-aware sentient beings capable of
united action. 

Action

An action is a nomologous ontogen in which no delta of any evolute constituting
that ontogen is an ontogen. 

In the context of this explication, an action is a nomologous ontogen satisfying
both of the following two conditions: 

1. No delta of any evolute constituting that ontogen is an ontogen. 

2. There exists at least one fact of intentionality which is an enablement
condition of least one delta of at least one evolute constituting that
ontogen.

…
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necessary accomplishment conditions for the input intents, called antecedents. The final outputs are
fully instantiated and validated instances of the Architecture Element structure for each antecedent
intent. These are generated by iterating between the Derivation and Explication processes, once for
each antecedent. This iteration continues until certain specific termination conditions are
reached.56 Thus the form of this iteration suggests a ‘spiral,’ like that which is frequently used to
depict the iterative execution of the analogous systems engineering processes. Here one of the cru-
cial elements produced are definitive moe allocations to the antecedent intents: these are essential for
downstream action programming and enterprise assurance processes. 

We were unable to complete a derivation of antecedents to any particular intent during mereos
Phase III. However, we were engaged in developing a derivation of Focus On Total Solutions itera-
tively in conjunction with our explication of that intent, and again we have included an extract of
from a working paper on the antecedents of totality for processes to illustrate what this process
involves—to convey a “feel” for the formal derivation process.

56 Crudely speaking, Derivation proceeds until all identified ‘leaf ’ antecedents are either (i) already actual; (ii) can be
actualized by an ‘atomic’ action of an enterprise operating system; (iii) cannot be actualized by any possible operat-
ing system action or process—i.e., are scope-extrinsic; or (iv) define the same condition as at least one other antecedent
or (b) are variants of other antecedents, such that they satisfy conditions (ii) or (iii).

Total solutions are instrumentalities for achieving all strategic purposes of all stakeholders across
the entire life-cycle of a given strategic context. One special kind of total solutions are life-cycle
balanced products capable of being used by a customer to satisfy all their needs in a given opera-
tional context. Producing definitions of these special kinds of total solutions is the enterprise of
systems engineering. Total solutions in the lmas enterprise operating system context are life-
cycle balanced products and services for all lmas stakeholders. Creating an enterprise operating
system for producing and sustaining these is the enterprise of enterprise engineering. 

Total solutions can only be realized by consummately capable agencies possessing complete
and accurate information executing total processes supported by superior technologies. That is,
total solutions require total processes, total technics44, and total information. These are the three
principal entailments of achieving total solutions; all others follow from these. 

Focus is a conjunction of two conditions. The first is a convergence of intent among all the
stakeholders in a given strategic context—that is, a sustainment of a single intent by all of them.
The second is an interdiction of conf licting intents maintained by stakeholders in a given strate-
gic context—that is, an inhibition for action based on a divergent intent held by any of them. 

Focus on the central intent of a given strategic context can only be attained by consummately
capable agencies possessing complete and accurate information and meta-information45 execut-
ing total strategic processes supported by superior technology. That is, focus entails a total strat-
egy process, total technics, and total information; all other derivative antecedent conditions
follow from these three. 

Total entities—total in general—are complete and optimal in the life-cycle of a given context.
The condition of totality differs for processes, technics, and information. 

Total Processes

There are exactly three processes constituting the life-cycle of any given entity. These
are Provisioning, Execution, and Assurance. A total process satisfies at least one of the
following criteria:

1. It is an optimal configuration of an entire life-cycle; that is, it comprises all pro-
visioning, execution, and assurance for at least one entity type. 

2. It is a complete and optimal configuration of at least one of the above three pro-
cesses; that is, it is an optimal element of a total process. 

44 The term “technics” is used to cover both human capability and technology. 
45 Information about information; in this particular case, information about the information possessed by other stake-

holders—especially those maintaining divergent intentions. Competitors are classical examples of these stakeholders,
and competitive intelligence is a classical example of meta-information in this context. 
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Intent Systemization

Intent Systemization is the strategic enterprise engineering analog of the technical systems engi-
neering process called system optimization, applied to stakeholder intents rather than definitions of
solutions to those. These two processes are however only functional analogs—they have almost
nothing in common other than their roles in their respective parent processes. 

We have stated before that purposes—and thus the intents that articulate them—are numerous
and diverse in kind. One side effect of the Intent Derivation process is to increase both the quantity
of and the diversity among these intents, as antecedents are iteratively identified and explicated. In
an ideal universe where capabilities and resources were infinite, enterprise objectives would be
identical to stakeholder intents, and achieving these objectives would represent accomplishment of
all the intents of all stakeholders. But of course this ideal is an absolute empirical impossibility and
almost certainly a formal one, given typical divergences among stakeholder intents—those which
are diametrically opposed being paradigm examples. Enterprise objectives will never be identical to
intents. For exactly these same reasons, neither will enterprise moes ever be identical to stakeholder
moes. As a practical matter of fact, gaps will always exist between what is desired and what is achiev-
able. 

In the final analysis, there are only four fundamental ways to bridge such gaps. The first is by
invention—enhancing the effectiveness of existing capabilities or creating new ones. The second is
by acquisition—enhancing utilization efficiencies of existing resources or securing additional
resources, via procurement, exchange, or alliance. The third is by exclusion—eliminating one or
more stakeholder intents from the strategic mix. The fourth is by systemization, which involves opti-
mizing the objectives themselves in advance of defining action programs for carrying them out. That is,
cogent intent systemization can, in many circumstances, pre-empt the need to devise actions to over-
come gaps entailed by intents that can be factored or subsumed, and can significantly decrease the
amplitude of actions required to overcome those that remain. This last technique is a signature of
expertise in the art of politics and a hallmark of incisive strategic skill. The Intent Systemization
process is a formalization of this technique. 

The primary inputs to the Intent Systemization process are the validated outputs of the Intent
Explication and Derivation processes—that is, precisely stated intents, together with their anteced-

3. It is a complete and optimal configuration of a permissible variant of a total pro-
cess or an element of a total process. 

4. It is demonstrably traceable process requirement imposed either by stakeholders
with governing authority over the enterprise, or by the Lmas Constitution.

If a process satisfying the fourth criterion above does not also satisfy one of the other
three, then the process is defective—it is not total. This condition is an effectivity for a
corrective action process which must as defined in the architecture and implemented
by the operating system.

An enterprise operating system process is a systemic process. An enterprise realization process
is a strategic process. Enterprise operating system corrective action processes are architectonic—
these are special kinds of enterprise realization processes. 

Total solutions require total systemic processes. Focus requires total strategic processes.
Autonomism requires architectonic processes. Thus two specific antecedents of Focus On Total
Solutions are:

1. Execute All Enterprise Actions Via Total Systemic Processes

2. Govern All Enterprise Actions Via A Total Strategy Process.

Both of the above entailments can be stated by the following general imperative:

Act Via Total Processes. 

…
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ents, and moes. The intermediate outputs of this process are formal analyses of taxonomic similarities
and divergences among the these, developed using a self-applicative taxonomy of similarity itself.57

Fulfilling the analogous function of product/process structure optimization in a strategic manage-
ment context, these analyses are accordingly represented using exactly the same relations as those
used in that context—namely, articulation, factorization, and unification58 relations. Here they
relate elements of intentional structures, respectively delineating Realization process segmentations,
uniformities, and conjunctions among these. The final outputs of this process are balanced, action-
able, and maximally dense enterprise objectives and moes, defining the requisite outcomes of enter-
prise actions.59 These objectives subsequently undergo achievability analysis via the Operational
Analysis process, one of three major subprocesses constituting the Action Programming process. A
primary formal structure involved in that process, called a Strategic Context, is brief ly described in
paragraph 4.2.4.4 below. Instances of these structures in turn are the primary inputs to other down-
stream Action Programming subprocesses, and to the Solution Realization and Enterprise Realiza-
tion processes.

4.2.4.3 Effectiveness Measure Systematics

Qualification criteria must be explicitly defined to enable governance of enterprise actions, and to
enable determination of the value of solutions for instrumentalizing the actions of enterprise stake-
holders. These criteria are moes—and defining, imposing, and determining their states constitute a
core enterprise process called Assurance. As we stated earlier, moes are internalized stakeholder value
impositions on the enterprise—they define what value to which stakeholders are to be delivered via
execution of enterprise processes. Thus defining an enterprise operating system and an assurance
process for that system entails a systematic and definitive answer the following question: 

What are appropriate performance measures for each of the enterprise processes?

Our efforts to answer this question were incomplete at the end of mereos Phase III, although a
great many results had been obtained and interim documentation produced by the end of calendar
2000. The overall objective of these efforts is to specify a suitable mensuration system for the nae oper-
ating system—a critical mechanism of its Assurance process. We have decided not to incorporate
the text of these working papers into this document, as they are exceedingly abstract, employ the
technical language of our metasystematics, and thus would be of little value to convey concrete
results. We have instead summarized the specific areas we have focused on below. 

❙ Measure Of Effectiveness Delimitation

Determining specific and appropriate performance measures for enterprise processes presupposes a
prior and formally adequate generalized definition (taxonomic delimitation) for the class measure
of effectiveness itself. No such delimitation exists, so we were forced to undertake its develop-
ment. 

❙ Qualification and Quantification Process Definitions

Imposing moes on a process presupposes that processes exist for determining the values of the mag-
nitudes in question. Accordingly we developed formal definitions of qualification and quantifica-
tion—the processes required to determine the values of qualitative and quantitative moes,
respectively. The structures and their elements associated with these processes—designated metrol-
ogy and nomology—are depicted in the Architecture Element Elements drawing on page 99 in
Attachment 2. 

57 The similarity taxonomy is depicted by Figure 32 on page 101 in Attachment 2. 
58 Definitions of the articulation, factorization, and unification relation types are presented in paragraphs 3.2.4.1,

3.2.4.2, and 3.2.4.3, respectively, in Section 3. Here the entities standing in the attribute positions of these relations
are intents and their elements, rather than product structures and their elements. 

59  In many cases, these objectives can simply be ‘read off ’ the inter-intentional relations. That is, once the latent dis-
continuities (articulation relations), intrinsic homologies (factorization relations), and attainable subsumptions
(unification relations) among a given set of intents and their relata have been delineated, restating these as enter-
prise objectives coordinate to these relations is a reasonably trivial exercise. 
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❙ Moe Taxonomy

There are dimensions of variation among enterprise processes that partially determine the appro-
priateness of specific moes for those processes. For example, the Strategy Realization process and
most of its secondary subprocesses are abstract and synthetic, while Solution Realization and most
of its secondary subprocesses are concrete and synthetic. Moes which are appropriate for abstract
cognitive processes are not appropriate measures for concrete physical ones. There are several other
variations among processes over and above these two, all of which have implications for moe impo-
sition. There are also intrinsic variations among moes themselves. For example, systems engineers
correctly distinguish between performance and moes expressing requisite degrees of this attribute60

and effectiveness, and moes expressing requisite degrees of that one. Without getting bogged down in
a long discussion, suffice it to say for our purposes here that Performance is efficiency of Realization
and Effectiveness is capability of Realization—these are very distinct characteristics, indeed. 

One of the more difficult problems involved in developing a formal taxonomy of moes for enter-
prise processes is identification of a suitable set of basic magnitudes. If we were embarked on a project
to develop such a taxonomy in a more concrete domain, this would not be a problem. For example,
there are several families of basic physical magnitudes to choose from—such as those employed in
the ‘metric’ (si) system—and there are already a large number of ‘intentional’ magnitudes that must
be accommodated in any undertaking of this kind—the gamut of economic measures being para-
digm examples. But while magnitudes such as duration and economic efficiency may be important
enterprise process moes, at least to some stakeholders, they and their kin are far from the only ones of
significance from an assurance standpoint. Thus the question is: if physical and economic magni-
tudes constitute only a subset of the magnitudes involved to determine the performance and effec-
tiveness of enterprise processes, what are the others? And perhaps even more importantly, given any
particular answer to that question, how do we know we have identified all the possible and relevant
magnitudes? That is, how can we be sure that the list is complete, systematically derived, and appo-
site to the purposes at hand?

❙ Purpose/Process Taxonomy

What constitutes an acceptable degree of effectiveness or performance is always relative to a spe-
cific purpose—i.e., a particular stakeholder type. For example, moes appropriate for determining
requisite degrees of Customer value are simply not the same as those for determining requisite
degrees of Shareholder value. This entails that the answer to the taxonomic question at hand will be
a ‘vector’ of moes for each process, each element thereof representing the appropriate measure for a
particular stakeholder type with respect to that particular process. There are 10 principal stake-
holder types, and 21 enterprise processes. This entails that there are in principal at least 210 moes for
the enterprise processes. Developing this taxonomy is a decidedly non-trivial endeavor. 

4.2.4.4 Operational Analysis and Strategic Contexts

A key requirement identified in paragraph 4.2.3 above is that mission definitions suitable for enter-
prise operating system synthesis must consist in formal and effective expressions of strategic intent.
Defining invariant purposes in actionable form, these constitute the origins of all ‘top-level’ enter-
prise operating system requirements. Indeed, systematic operating system design, deployment, and
operation mandates that all stakeholder purposes must be formalized, invariant or otherwise. Thus
Intent Formalization is a critical enterprise operating system process. 

Accomplishing stakeholder intents requires effective action. Effective action by enterprises via
their operating systems presupposes prior definition, and these definitions—action programs—are
the primary outputs of the Action Programming process. Action Programming—i.e., enterprise
operating system programming—is the Development phase of the Strategy Realization process,
depicted by the middle cell in the top row of the diagram in Figure 19. The principal inputs of this
process are enterprise objectives and moes defined by the Intent Systemization subprocess of Intent
Formalization. Stipulating requisite outcomes of enterprise actions, these objectives and moes con-

60 These are called Technical Performance Measures (tpms) in systems engineering. 
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stitute the governing functional, performance, and effectiveness requirements for synthesis of
action programs to achieve them. 

Like its analog in product definition contexts, action program synthesis must also be governed by
additional constraints over and above the functional, performance, and effectiveness requirements
represented by enterprise objectives and moes. One of the most crucial of these is executability—the
analog of producibility in product definition contexts. That is, an action program that cannot be exe-
cuted is just as worthless in a Strategy Realization process context as an unproducible design is in a
Product Realization process context. And, just as producibility determinations entail prior evalua-
tions of extant and envisioned technical capabilities, ascertaining the executability of action pro-
grams necessitates prior evaluations of existing and postulated strategic capabilities, as those bear
on accomplishing a given objective. Thus definitive determinations of feasibility or achievability—the
same thing expressed as an attribute of objectives and intents—constitute crucial enablements of
action program synthesis and subsequent executability evaluations of those programs. 

Achievability determinations are products of the Operational Analysis subprocess of the Action Pro-
gramming process. These determinations are rendered as fully instantiated instances of the Strategic
Context structure, graphically depicted by Figure 22 below. This structure is a variant of our

Intentional Complex metastructure, adapted to support the formal needs of the Operational Analy-

Figure 22.  Strategic Context Elements
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sis process and other downstream Action Programming subprocesses—specifically, the Program Syn-
thesis subprocess. The two primary functions of the Strategic Context structure are to inform
achievability analysis of stakeholder intents and their correlate enterprise objectives, and to frame
the results of that analysis. This structure is, accordingly, a formalized and extended realization of
the implicit structures employed in the swot61 and capability assessment processes in strategic man-
agement. 

❙ Classification Scheme

The process of developing rigorous and detailed characterizations of strategic intent via the Intent
Formalization process is inherently difficult. Precise analyses framed in terms of complex abstrac-
tions are required to achieve meaningful results. Carrying out operational analysis to determine the
practicability of accomplishing these intents is even more difficult. Intrinsically complex material
matters of fact, such as enterprise capabilities, environmental factors, and certain specific relation-
ships between these—both actual and implied—are principal subjects of such analysis. Nevertheless,
insuring that results of enterprise actions are congruent to stakeholder purposes is the paramount
aim, regardless of the difficulties involved, and so operational analysis must also accordingly insure
that congruence of actions to intents is consistently maintained. 

Another factor exacerbating the difficulty of operational analysis is the sheer constitutional com-
plexity of the entities themselves. Agencies—enterprises and their operating systems—environ-
ments, stakeholders and their actions, and the solutions necessary to instrumentalize those, are
very complex systems; that is, each one individually is an integral product-process gestalt and is typ-
ically both taxonomically diverse and quantitatively extensive. And, the relationships among these
are correspondingly diverse and numerous as well. However, only a few element types, relations,
and attributes of these entities are relevant to this process; the full systemic power of the Architec-
ture Element structure taxonomy is simply not required for purposes of operational analysis. This
fact can be exploited to mediate the difficulties involved by redacting the Architecture Element struc-
ture into a more succinct structure for analytic purposes. The Strategic Context structure is the
result. 

As the primary aim of operational analysis is to ascertain the achievability of a given intent, the
central object in a Strategic Context structure instance is the intent itself, as depicted by the box
labeled INTENTIONi in the center of Figure 22. All strategic intents objectify or designate a specific state
or states of affairs (soas) which an agency or agencies desire to be actual. From a purely formal
point of view, every intentional complex comprises the following elements: 

1. the intention itself; 

2. the soa or soas that intention objectifies;

3. the agency or agencies sustaining the intention; and,

4. the environmental context in which the sustainment of that intention occurs. 

The Strategic Context structure eliminates the distinction between the intent and the soa it desig-
nates—they are conceived as one object for operational analysis purposes. Eliminating this distinc-
tion is one step in redacting the Architecture Element structure into the Strategic Context structure.
This is why there is only one element of that type in the structure—i.e., INTENTIONi. 

Effectivity

The formal distinction of effectivity between the actual intent and the desired state it objectifies is not
eliminated. Effectivity is instead employed as a ‘dimension’ of the Strategic Context structure. The
two ‘coordinates’ of this ‘axis’—operant and posited—are used in conjunction with others to ‘grid’
Strategic Context elements and, thereby, to delineate distinctions between them which are signifi-
cant for operational analysis. The Strategic Context diagram depicts these differences in effectivity
both visually and by some element designations. Specifically, the top half of the box labeled

61 Strength, Weakness, Opportunity, and Threat. An excellent discussion of these four elements in a pure strategic man-
agement context can be found in David’s Strategic Management Concepts; see our references 5.2 and 5.3. 
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INTENTIONi is grey, while the bottom half is red, implicitly depicting the location of the axis itself.

Hence the top half of the drawing contains those elements which are operant—i.e., actual elements
of the agency sustaining the central intent and those of its situating environment. The bottom half
contains those which are posited—i.e., postulated elements of the sustaining agency and its envi-
ronment projected by that intent. We will describe these in more detail shortly. 

Location

As we stated before, all intents are situated in specific environments, and this locative feature is
employed as the second ‘dimension’ of the Strategic Context structure. The two coordinates of this
axis—adjunct and advenient—are used to distinguish Strategic Context elements which are extensions
of intents from extrinsic elements comprising them. One can envision this axis an imaginary verti-
cal line through the center of the Strategic Context diagram, with adjunct elements positioned on
the right and environmental elements on the left. 

Combining both the effectivity and location dimensions, we obtain four ‘quadrants,’ each con-

Figure 23.  Effectivity Coordinates

Figure 24.  Location Coordinates
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taining a specific category of Strategic Context element types. 

❙ Elements

Instrumentalization and Application Relations

Achieving an intent is an outcome of effective actions or processes. That is, realizing a posited soa pro-
jected by a desiderative intent entails execution of an action or a process that results in at least one
of the following:

1. that soa becoming actual; 

2. an instance of that soa scheme becoming actual; or,

3. an admissibly congruent soa becoming actual. 

Any intents necessitating the effort of operational analysis cannot be directly achieved by atomic
actions. They entail complex realization processes to achieve them and correspondingly complex
instrumentalities—i.e., solutions—to provision the execution and governance of these processes.
Realization of the instrumental solutions in turn entails agencies with the capabilities required to
render them, and typically these are different agencies than those executing intent realization pro-
cesses. That is, one agency typically executes one or more operations to realize the intent, thereby
performing the role of effective agent in a given strategic context. Another agency executes the
entailed solution realization process, thereby performing the role of instrumental agent in that con-
text. Even if the same agency fulfils both the effective and the instrumental roles in a given strategic
context, that agency will exemplify distinct characteristics with respect to each of those roles.
Moreover, its relations to the remaining elements constituting that context will accordingly differ,
and so will the attributes of interest for operational analysis it exemplifies in each of those roles.
Again however, these roles are typically performed by distinct agents.

In light of the above remarks we can now introduce the two groups of Strategic Context ele-
ments±—the relation types instrumentalization and application, their attributes, and the entity
types standing in those attribute positions. These two relations are respectively the functional and
dispositional variants of the capacitation relation type, defined in paragraph 3.2.5.2 in Section 3.
Instrumentalization, the relation of agential provisionment, is the formal structure invoked in our
characterization of the enterprise taxon in paragraph 4.2.4.1, and is consequently a primary rela-
tion among the three ‘top-level’ enterprise processes, as illustrated by the diagram in Figure 19.
Operant and posited variants of this relation, together with the entity types in those attribute posi-
tions, comprise a major group of Strategic Context elements as well. The diagram in Figure 26 below

Figure 25.  Element Type Quadrants
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illustrates this intersection between the Strategic Context structure and the Enterprise Process Tax-
onomy by overlaying the elements they share. 

Note that only the posited instrumentalization relation and attribute elements are shown ung-
hosted in this diagram. The red 45˚ line drawn through the upper right quadrant in the above figure,
connecting the boxes labelled INTENTIONi, POSITED AGENCY, and POSITED OFFERINGS, depicts the posited vari-
ant of this relation and its elements. Its operant counterpart and elements are depicted along the

Figure 26.  Strategic Contexts and Enterprise Process Definition Phases
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grey 45˚ line drawn through the upper left quadrant above (upper right in the normal orientation);
these can be seen more easily in Figure 22 than in the above diagram. 

Application, the relation intrinsic provisionment, is the relation bearing the determining
attributes of stakeholder value, as was illustrated by the diagram in Figure 20. Both operant and pos-
ited variants of this relation, together with the entity types in its attribute positions, comprise a
second major group of Strategic Context elements. The black line labelled operant value in the
above figure, which connects the boxes labelled OPERATIONi and SOLUTIONi, depicts the posited variant
of this relation and its elements. Again, its operant counterpart and the elements of that applica-
tion variant, which appear opposite to its posited counterpart, can be seen more easily in Figure 22
than in the above diagram. 

Environments

Again, all intents are situated in specific environments, and so are both the effective and instrumen-
tal agencies that sustain them. Environments, their elements, stakeholder agencies, and the opera-
tions they execute to achieve their aims accordingly constitute another group of Strategic Context
element types. 

Strategic Magnitudes

The remaining Strategic Context structure elements are magnitudes collectively determining intent
achievability. These magnitudes fall into two major categories—Contrast and Capacity for Effective Action
(cea). 

As we pointed out earlier, gaps will inevitably exist between what stakeholders desire and what
enterprises can actually achieve. While many of these can be abated in advance via the Intent Sys-
temization process, some will almost certainly remain. On the other hand, capability and resource
surfeits will frequently exist as well. Identifying these gaps and surfeits and characterizing them in
terms of these two categories of magnitudes is the main focus of operational analysis. 

Contrast

The operant and posited configurations of Strategic Context elements relative to a particular intent
typically differ. Thus the achievability of an intent by the operant configuration of an enterprise in
its operant environment will almost certainly diverge from the achievability of that intent by the
entailed or posited enterprise configuration in the projected environment. Any such divergences
will have ramifications for both capabilities and resources. Accordingly, one task required to estab-
lish intent achievability involves determining two correlated sets of values expressing these differ-
ences. The first set comprises Contrast values between operant and posited configurations of
entities in instrumentalization attribute positions—namely, enterprise and solution configura-
tions. These are called Congruence and Resemblance values, respectively, and are depicted above the
“delta” symbols on the right side of Figure 27 below. The second set consists in Contrast values
between operant and posited environment configurations situating the intent and stakeholder
operations. These are called Fluency and Perpetuation values, respectively, are depicted above the
“delta” symbols on the left side of Figure 27.

Cea

Cea also consists in two distinct but correlated sets of values. The first set, called instrumental cea,
comprises cea values representing the abilities of instrumental agencies to render solutions
required to provision accomplishment of the intent. The second set, called functional cea, comprises
cea values representing the abilities of stakeholders sustaining the intent to achieve it and thus
other superordinate intents, via operations employing enterprise solutions. Both of these sets are
summations of operant and posited values of the same attributes. The operant and posited values of
instrumental cea are called Fitness and Feasibility, respectively, depicted above the “sigma” sym-
bols on the top and bottom of Figure 28 below. The operant and posited values of functional cea
are called both called Value—i.e., the attribute of the Capability relation defined in paragraph
4.2.4.1. Determining these two sets of cea values is the primary product of Operational Analysis. 
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Figure 27.  Contrast Variants

Figure 28.  CEA Variants
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“Every tool carries with it the spirit by which it has been created.”

 

Werner Karl Heisenberg, 1958
5 Conclusions
Product data are the premier informatic capital of industrial enterprises, and the overall quality of
these assets—their completeness, accuracy, accessibility, and maintainability—are major determi-
nants of enterprise performance and vitality. The processes and supporting infrastructure that pro-
duce and sustain these data are thus critical and systemic elements of enterprise operating systems,
and endeavors aiming to improve the effectiveness of either of these are directly focused on
enhancing the value enterprises can deliver to their stakeholders. 

There is certainly no dearth of technical, strategic, or socio-economic obstacles impeding real-
ization of substantive gains in product representation process effectiveness and infrastructure capa-
bility. As one informed Air Force lab director once dryly observed, “It’s a target-rich environment.”
In our view two of these impediments stand out with a certain extreme acuity. The first is very
technical indeed— it is the metasystematic deficiency that lies at the heart of both the representa-
tional shortcomings of existing information systems we discussed at length in Section 3, and the
methodological gap we described in Section 4. The second obstacle is essentially socio-economic in
nature, although there are strategic overtones to it as well. This impediment consists in the wide-
spread diminishment in understanding of product representation process and infrastructure
requirements in industrial organizations, their consequent abrogation of control over those to
commercial software vendors, and the resulting albeit unsurprising conf lation of total process solu-
tions with information systems. 

Existing product representation processes in industrial enterprises are segmented to align with
the Definition, Development and Support subprocesses of Product Realization processes. This parti-
tioning compartmentalizes the organizational and information systems infrastructure elements of
these processes as well—the famous ‘wall’ between engineering and manufacturing organizations
and the well-known difficulties encountered by those attempting to integrate pdm and erp systems
being two particularly illustrative cases in point. These divisionalizations are have a long historical
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standing in industry and are, therefore, familiar to all and accepted as the natural order of things by
many. Nevertheless, they are artificial, suboptimal, and in light of both the product representation
and enterprise operating system needs previously described, they are outdated and constitute a seri-
ous impediment to meeting those needs. 

Recognition by many industrial enterprises of problems attributable to unnecessary and excessive
divisionalization was a major impetus for their enthusiastic adoption of the Integrated Product
Development (ipd) model of the Product Realization process and Integrated Product Team (ipt)
organizations. And, those enterprises that implemented this inherently integrative approach
achieved significant gains in Product Realization performance and effectiveness as a result. How-
ever, achieving the full potential of large-scale enterprise process integration entails suitably capa-
ble infrastructure over and above the organizational element. Specifically, realizing that potential
and sustaining the resulting gains entails equally integrative information systems—and such systems
just do not exist today. Moreover, such sweeping changes in an enterprise’s Product Realization pro-
cess entails commensurate and carefully coordinated architectural changes to all its other major
enterprise processes—and the requisite methodological technics to accomplish that with a reason-
able certainty of success do not exist either. Our objective was to bring these tools closer to reality
than they were at the beginning of the mereos program. 

The adolescence of enterprise engineering as a discipline constitutes a significant strategic oppor-
tunity for an innovative academic organization to establish itself as a pre-eminent provider of
research, practical applications, and graduates in this interdisciplinary field. In pursuit of that
opportunity, an academic institution would need to conduct focused research to fill gaps in enter-
prise engineering principles and methods, thereby strengthening the foundations of that discipline,
enabling the eventual codification of its methods, and provisioning actions to fulfill the needs we
have presented here.

The Air Force may at some point find it in their interests to play a role in such an endeavor as
well. One potential role would comprise a second iteration of its most successful industrial base
program—the Integrated Computer-Aided Manufacturing (icam) program—focused this time on fos-
tering development of solutions to the needs currently confronting the aerospace and defense
industry, some which we summarized in this document.62 

62 The icam program was veritable fountain of novel and valuable technology. For example, it created the first full-scale
idealized enterprise architecture, called the Factory of the Future (FoF). Icam also funded and managed development
of a plethora of technologies designed to satisfy FoF architecture requirements. Notable among these were the ICAM
Definition Language (idef), the Integrated Information Support System (I2S2, the second attempt to build a 3-schema
dbms), the designs for the ipd process mentioned above, the Product Definition Exchange Standard (pdes, which later
became step), advanced Machining, Composites, and Assembly centers, and, late in the program, the first experimen-
tal version of our own pacis system. 
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Attachment 1: Comments Concerning STEP
This attachment presents an overview and some comments on step, developed mid-way
through mereos program execution. We conducted this review in order to determine the
representational depth of those of that standard’s meta-level structures pertaining to our
interests in the mereos program context. Current information about step can be found on
many websites. <http://www.nist.gov/sc4/> and <http://pdesinc.aticorp.org/> are reasonable
starting points.

The STandard for the Exchange of Product model data (step) is an officially-sanctioned standards
development project conducted by iso tc184/sc4/wg3, the International Organization for Standard-
ization, Technical Committee 184 (Industrial Automation Systems)/Subcommittee 4 (Industrial Data
and Global Manufacturing Languages)/Working Group 3 (Product Modeling). The actual step stan-
dard is iso 10303 Industrial Automation Systems - Product Data Representation and Exchange. The
standard is comprised of many parts, each addressing a particular aspect of product modeling. Dif-
ferent parts of the standard are currently at various levels of review and approval as international
standards. 

Step is described as a conceptual specification that forms a basis for communicating product
information at all stages in a product life cycle, covering all aspects of product description and
manufacturing specifications. step is intended to support approaches such as concurrent engineer-
ing and integrated product/process development. The step standard addresses the data required to
develop, analyze, manufacture, document and support products ranging from mechanical products
to electronic products, and from ships and airplanes to factories and office buildings. There are four
primary components to step:

1. The express data modeling language used to define all step data;

2. The actual schemas or definitions (i.e., data models) of step data, including product geome-
try, topology, shape, representation, features, tolerancing, structure and process specifica-
tions;

3. The application programming interface, called sdai (Step Data Access Interface), which is a
standard interface to enable applications to access and manipulate step data; and

4. The step Physical File, which is (initially) an ascii format file used for data exchange
between or among systems.

The step standard is envisioned as being implemented at four levels over time. The levels are:
Level 1 ASCII Text File Exchange; Level 2 Working Form Exchange or Application Program Interface;
Level 3 Shared Database; and Level 4 Knowledgebase. Most of the current work is directed at levels
2 and 3.

The primary part of iso 10303 — the step standard — related to the topic of product structures
(including boms) is iso 10303-44 Integrated Generic Resources: Product Structure Configuration.
This part addresses all major aspects of product structure and configuration management including:
definition of part versions; release and approval; assemblies; configuration management of assem-
blies, etc. There are also other parts that relate at least partially to the topic of product structuring.
These include:

❙ iso 10303-41 Integrated Generic Resources: Fundamentals of Product Description and Sup-
port;

❙ iso 10303-42 Integrated Generic Resources: Geometric and Topological Representation; and

❙ iso 10303-43 Integrated Generic Resources: Representation Structures (also referred to as
the product shape integration model).

It should be noted that implementation of the standard in the form of cad systems and other
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information technology may ref lect different divisions or packaging than the parts of the standard
itself. For example, it is envisioned that a step system for a manufacturing enterprise might have sys-
tem components for: features analysis/feature-based design, geometry development; mechanical
cad, electrical cad, finite element modeling, bom processing, versioning/configuration manage-
ment, material forecasting, and manufacturing process development.

The parts of the standard noted above are generic data models. There are also resource models that
are intended to provide information in generalized application domains. They draw on the generic
models, specializing them as necessary. Examples are models for finite element analysis and kine-
matics. Additionally, there are application protocol data models that target specific application
domains. Examples are sculptured surface models and two-dimensional drafting models. These can
be furthered specialized to application areas such as mechanical, electronics, architectural, and
process industries.

Data models comprising the step standard can also be categorized based on the level at which
they address their subject area. These categories can be described as: data within a part; data about a
part; and data about a group of parts. ‘Data within a part’ is the data that is used to describe the
physical nature of the part itself, such as its topology and geometry. ‘Data about a part’ is related to
the part, but is not directly associated with the description of the nature of the part. This data
includes, for example, part name and part number, security classification, approvals, revision status,
material, etc. Some of this data is data that might typically be associated with a bom, particularly a
bom for a component part. ‘Data about a group of parts’ focuses on assemblies. Examples of this
type of data include which versions of what parts go into an assembly and where each component
part or subassembly is located in the context of the assembly space. In other words, this data
addresses traditional parts lists or engineering boms, but also contains additional information relat-
ing to component usage or location on the assembly. That additional data was noted as being useful
to manufacturing personnel for actually assembling the part. In this sense, the step concept of an
engineering bom can include additional data intended to assist with the manufacturing of the part.

The step standard supports different representations of a part, but these differences seem to relate
largely to scale and form, i.e., how much detail is provided or what presentation format is used. For
example, it is noted that most design engineers and manufacturing engineers need a detailed prod-
uct model. However, in cases where the product model is exchanged with a customer or supplier,
some details of the part structure may be hidden to protect proprietary part designs. It was also
noted that product models and related documentation used for support activities, such as mainte-
nance, only need to show replaceable part units and can often be presented in simple 2-D form
rather than as 3-D solid models.

In summary, the step standard is intended to produce a single, logical product model that can be
consistently accessed and shared across the various activities performed throughout the life cycle
and their supporting information systems. step does not preclude allowing specialized data to be
layered onto core generic data models, and in fact, supports this approach through a deliberately
layered data architecture. By the same token, the standard does not provide any explicit support for
encoding and relating multiple boms. Also, the step standard in its general tone seems to encourage
an overall concept of part data standardization (in the sense of reducing any unnecessary variabil-
ity) across the life cycle, coupling that with the concept of multiple presentations ('views'). This
seems to indicate a preference for creating a common bom with some (albeit maybe limited) spe-
cialization and with multiple presentations.

Step and Multiple boms

The step product structure model — as represented in logical or abstract form in iso 10303 Parts 41,
43 (minimally) and 44, and physically (i.e., ‘implementationally’) in ap 203 (and to some degree in
ap 208 as well) — is officially neutral with respect to multiple boms. Specifically, the step view is
some enterprises allow them, some don't, so the step model should support representation of mul-
tiple boms, but within the same basic model framework as the basic bom (i.e., no or only minimal
data structures should be defined to explicitly support bom multiplicity, and anything that does sup-
port this approach should not affect or otherwise change the other portions of the data model).

The original data entity structure was replaced by another entity called product_definition,
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which as one would expect is the top-level product structure entity. It basically does the same thing
as structure, only it also has some other general data elements that were deemed appropriate for
the highest-level entity. As with structure, one can establish pointers, or at a minimum a system
implemented based on this standard could determine that their were multiple boms based on the
fact that there would be many (more than one at least) product_definition entities for the same
part. (Note that how “same” The model also still contains make_from_usage, which is the main data
entity intended to deal both with raw material and ‘factorization’ issues.

These data entities are in Parts 41 and 44 of iso 10303, but not in ap 203, which is intended to be
much narrower in focus (they deliberately did not want to get into the multiple bom issue in this
ap). Ap 203 is both a specialization and application of Parts 41 and 44. ap 203 is specialized in the
sense that in order to apply Parts 41 and 44, certain things in the abstract data models were left out
or further restricted. For example, all the parent-child relations or constraints in ap 203 are binary,
i.e., they do not allow for the additional conventions introduced to handle other-than-next-higher
assembly pointers or similar conditionals. Something like 60+ additional rules or constraints were
introduced into the model to make it 'implementable'. Rule 15 is the closest rule dealing with the
multiple bom issue—but it really addresses versioning or configuration management issues, not mul-
tiple boms. Ap 203 does not go very far into configuration management, however. The ap that is
most directly tackling this issue (and may have some multiple bom-related data structures based on
versioning product_definition) is ap 208 Life-Cycle Change Management. As of this writing, ap 208 is
just now out for comment in draft form. 
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